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Abstract—We study distributed consensus problems of multi-
agent systems on directed networks and subject to quantized in-
formation flow. For the communication among component agents,
particular attention is given to the gossip type, which models their
asynchronous behavior; for quantization effect, each agent’s state
is abstracted to be an integer. The central question investigated is
how to design distributed algorithms and what connectivity of net-
works that together lead to consensus. This investigation is carried
out for both general consensus and average consensus; for each
case, a class of algorithms is proposed, under which a necessary
and sufficient graphical condition is derived to guarantee the cor-
responding consensus. In particular, the obtained graphical condi-
tion ensuring average consensus is weaker than those in the litera-
ture for either real-valued or quantized states, in the sense that it
does not require symmetric or balanced network topologies.

Index Terms—Directed graphs, gossip algorithms, mutli-agent
consensus, quantization, surplus-based averaging.

I. INTRODUCTION

D ISTRUBUTED consensus problems of multi-agent sys-
tems are of current research vitality in systems control.

The problem can be described as follows: consider a system
of networked agents each possessing a numerical value, termed
state; the agents communicate only with their neighbors and up-
date their own states accordingly, in such a way that they eventu-
ally agree on some common state. Such problems arise naturally
in motion coordination of multi-vehicle systems [1], and are also
closely related to oscillator synchronization [2] and leader elec-
tion [3]. In some other applications, the average value of the
total state sum may be of particular interest; examples include
information fusion in sensor networks [4] and load balancing
in processor networks [5]. Thus being a special form of general
consensus problems, average consensus further requires that the
agreed, common state be the average of the initial states of all
agents.

Substantial work on both general and average consensus
problems has been carried out in recent years, which may be
categorized in terms of distinct assumptions on state infor-
mation and network types. Early efforts focused primarily on
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real-valued states and deterministic (but possibly time-varying)
networks; references include [1], [6]–[11]. This basic setup has
then been extended in two different directions. One concerns
quantized state information in deterministic networks, due to
practical considerations of agents’ physical memories being of
finite capacity and digital communication channels of limited
data rate [4], [12]–[17]. The other direction adopts randomized
time-varying networks with real-valued states, a model that
potentially captures a variety of random behaviors exhibited
in realistic networks [14], [18]–[23]; see also [24] for related
problems in search engines. In the foregoing literature, partic-
ular attention has been given to designing local strategies for
individual agents, finding conditions on graphs/matrices that
guarantee consensus, and characterizing the tradeoffs between
information flow and system performance. For graph models,
we note that both directed and undirected have been extensively
investigated.

The objective of this paper and its conference precursor [25]
is to study both general and average consensus problems in the
setup where the states are quantized and the networks are ran-
domized. As to quantization effect, following [26] we assume at
the outset that the states are integer-valued, an abstraction that
subsumes a class of quantization effect (e.g., uniform quanti-
zation). We note that most work dealing with quantization has
concentrated on the scenario where the agents have real-valued
states but can transmit only quantized values through limited
rate channels (see, e.g., [14], [27]–[29]). By contrast, our as-
sumption is suited to the case where the states are stored in phys-
ical memories that are also of finite capacity, as in [17], [26]. On
the other hand, for network randomization we employ the gossip
type [18], [19], [26], [27]. This type specifies that, at each time
instant, exactly one agent updates its state based on the informa-
tion transmitted from only one of its neighbors. Although less
general than the random networks considered in [20], [22], the
gossip type instead captures asynchronous behavior of compo-
nent agents, an important aspect in distributed systems. In ad-
dition to the adopted setting for states and networks, we focus
solely on directed graphs, which is distinct from many related
works [23], [26]–[29] that assume only undirected graphs. As
also argued in [10], [19], directed networks potentially require
less amount of information flow and could perform more ro-
bustly against link failures when compared to their undirected
counterparts.

We emphasize that the central investigation in this paper is
to derive connectivity conditions on graphs that ensure general
and average consensus. Our contributions are now summarized
as follows. First, for general consensus we present a necessary
and sufficient condition on the graph connectivity that guaran-
tees convergence to some common state, thereby extending the
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results in [1], [8], and [22] from real-valued to quantized states.
Second, for average consensus we propose a novel class of algo-
rithms and derive a necessary and sufficient graphical condition
ensuring convergence to the true (quantized) average. This re-
sult extends the one in [26] from undirected to directed graphs;
the extension is challenging because with directed graphs of
gossip type, the state sum, and hence the average, need not be
invariant at each iteration. Also, the graphical condition we find
is weaker than those for both real-valued and quantized states in
[10], [14], and [22], since we do not require maintaining sym-
metric or balanced topologies in random time-varying networks.
As a tradeoff, however, the convergence rate of the proposed al-
gorithm may not be fast. Lastly, our result is scalable compared
to [16], [17], and [27] in the sense that the true average is al-
ways achieved regardless of the number of agents. These points
of improvement come with a cost in communication, which can
be, nevertheless, relaxed to two bits in addition to the integer
state in the transmission at each time.

The rest of the paper is organized as follows. First, we formu-
late both general and average consensus problems in Section II,
and then present their solutions in Sections III and IV, respec-
tively. Further expositions of our solution to average consensus
are given in Section V where we discuss two featured elements
in the proposed algorithm. Illustrative numerical examples are
provided in Section VI; and finally, our conclusions are stated
in Section VII.

II. PROBLEM FORMULATION

Consider a network of agents communicating only
with their immediate neighbors; the communication structure
can be captured by a dynamic graph, called communication
graph. We model the communication graph by the directed
graph (or digraph) : Each node in
stands for an agent, and a directed edge in ,
pointing from node to , indicates that is a neighbor of
and thus communicates to . Notice that the information flow
over the edge is only from to , but not the other way
around. Owing to quantization in information flow, we assume
that at time (nonnegative integers), each agent has an
integer-valued state , ; the aggregate state is
denoted by . We will design
algorithms with which every agent updates its state such that
all eventually converge to a common value.

An important feature of distributed consensus problems is
that the agents acting locally need not be precisely synchronized
by a common, global clock. To address this asynchronism we
model the communication graph in such a way that the agents
“gossip” with one another at random. Specifically, at each time
instant exactly one edge, say , is activated independently
from all earlier instants and with a (time-invariant) strictly pos-
itive probability such that . Along
this activated edge, node sends information to , while re-
ceives the information and makes an update accordingly.

In the first part of this paper, we consider the general con-
sensus problem as described below. Let the subset of be
the set of consensus states:

(1)

Definition 1: The network of agents is said to achieve quan-
tized consensus almost surely if for every initial condition ,
there exist and such that for all
with probability one.

Problem 1: Design distributed algorithms and find graphical
connectivity such that the agents achieve quantized consensus
almost surely.

For this problem, in Section III we will propose a class of
algorithms, under which we derive a necessary and sufficient
graphical condition that guarantees almost sure quantized con-
sensus.

In the second part, we extend the above problem to average
consensus by further requiring that the consensus value be the
average of the initial state sum. Formally, let ,
where is the vector of ones. Hence the average of
the initial states is , a number that need not be an integer in
general. We can, however, always write , where
and are both integers with . Thus, either or
(the latter if ) may be viewed as an integer approximation
of the average . Henceforth we refer to or

as the true (quantized) average.
To ensure convergence to the average, the algorithms reported

in the literature (e.g., [4], [10], [26]) rely on a key property
that the state sum remains invariant at each iteration. Un-
fortunately, this property in general fails in our gossip digraph
setup where only one agent is allowed to update its state at each
time. To overcome this difficulty, we propose associating to each
agent an additional variable to record the changes in individual
states; then the agents communicate these records to their neigh-
bors such that this important information can be utilized for
state updates. We call these additional variables surpluses, and
view them as augmented state components. The rules of how to
use these surpluses mark the distinctive feature of our averaging
algorithm compared to those in the literature; the concrete de-
scription is deferred to Section IV.

Formally, let the surplus of agent at time be
; thus, the aggregate surplus is

, the initial value of which is set to be .
As described, the surplus is introduced to make the quantity

invariant during iterations, i.e., for each

(2)

Consequently, if , and if
. Now define the set of the average consensus

states, which is a subset of , by

if ;
if

(3)

where

Definition 2: The network of agents is said to achieve
quantized average almost surely if for every initial condi-
tion , there exist and such that

for all with probability one.
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It is worth noting that our definition of average consensus dif-
fers from that in [26]: We require that all agents’ states converge
to an identical integer (either or ), a property that cannot
be achieved in general with the proposed algorithm in [26] due
to the “swap” operation.

Problem 2: Design distributed algorithms and find graphical
connectivity such that the agents achieve quantized average al-
most surely.

To solve this problem, in Section IV we will propose a novel
class of algorithms, under which we derive a necessary and suf-
ficient graphical condition that guarantees almost sure quantized
average.

III. QUANTIZED CONSENSUS

In this section we first solve Problem 1, the almost sure quan-
tized consensus. We start by presenting a class of algorithms,
which we call quantized asymmetric consensus (QC) algorithm.
Then we prove convergence to quantized consensus under a cer-
tain graphical condition.

A. QC Algorithm

Here we present QC algorithm. Suppose that every edge of
the communication digraph has a (time-invariant) strictly pos-
itive probability of being activated. Say edge is acti-
vated at time . Along the edge node sends to its state infor-
mation, , but does not perform any update, i.e.,

. On the other hand, node receives ’s state and up-
dates its own as follows:

(R1) If , then ;
(R2) if , then ;
(R3) if , then .

In words, node stays put if its own state is the same as the
received one; otherwise, it updates the state in the direction of
diminishing the difference.

B. Convergence Result

First, we need to review some notions from standard graph
theory (e.g., [30]). In a digraph a node is reachable from a node

if there exists a path from to which respects the direction
of the edges. A digraph is strongly connected if every node is
reachable from every other node. Now let be a
digraph, and a nonempty subset of . The subset is said
to be closed if every node in is not reachable from any node

in . Also, the digraph is called
the induced subdigraph by . A strong component of is a
maximal induced subdigraph of which is strongly connected.
Lastly, a node is called a globally reachable node if every
other node is reachable from [31, p.15]. Clearly the digraph

is strongly connected if and only if every node is globally
reachable.

Given , , define the minimum and maximum states
for the set by

(4)

Let denote the subset of all globally reachable nodes,
and similarly to (4), define , for .

We present the main result of this section.
Theorem 1: Using QC algorithm, the agents achieve quan-

tized consensus almost surely if and only if their communica-
tion digraph has a globally reachable node. Moreover, the con-
sensus value lies between and , for every .

It has been known (e.g., [8], [9], [11], and [22]) that the ex-
istence of a globally reachable node is a necessary and suffi-
cient graphical condition which ensures consensus in the case
of real-valued states. In this respect, Theorem 1 extends the re-
sult to the setting where both stored and communicated states
are quantized. For the consensus value, however, the left-eigen-
vector characterization for real states (e.g., [11], [22]) is no
longer valid in the quantized state case. Instead, it turns out that
the consensus value lies in the smallest interval containing all
the states of globally reachable nodes.

Our analysis technique, provided below, is a blend of graph-
theoretic and probabilistic arguments. Specifically, for the prob-
abilistic portion we borrow the proof structure from [26], and
extend the argument from undirected to directed graphs. We
will see that this extension requires some insight into digraph
structure. For the graph-theoretic part, we utilize a fact that re-
lates digraph connectivity to its structure. This approach differs
from the typical one (e.g., [7] and [10]) that exploits the spec-
tral properties of the Laplacian matrix associated to the graph
structure. Indeed, owning to our integer state setup, the overall
system does not enjoy a linear representation, and consequently
the matrix approach cannot be applied.

Lastly, notice that the rules (R2) and (R3) of QC algorithm
can be chosen so that the algorithm is similar to those for the
real-valued case. Hence, we conjecture that the convergence rate
of QC algorithm may be close to that of real-valued algorithms
[32]. This conjecture is supported by the numerical example
studied in Section VI-A.

Before providing the proof of Theorem 1, we introduce some
preliminary results.

Lemma 1: The agents achieve quantized consensus almost
surely if the following conditions hold:

(C1) The evolution of , , is a Markov chain with
a finite state space;
(C2) if in (1), then for all

;
(C3) for every there is a finite time such
that .

See [26] for the proof. Similar results may also be found in
Markov chain theory (e.g., [33]).

The next result ensures that in the special case where the com-
munication digraph is strongly connected, the condition (C3) in
Lemma 1 holds. Further, the consensus value lies between
and .

Lemma 2: Consider QC algorithm. If the digraph is
strongly connected, then for each and there is a
finite time such that .

Proof: Fix ; then . We con-
sider the following three cases.
Case 1) . Define

, and its cardinality ; also
let . Since
is strongly connected, there is an edge from
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to . Activate this edge with a positive proba-
bility; then (R2) of QC algorithm applies, causing

to decrease by 1. Repeatedly, can de-
crease to zero with a positive probability, which im-
plies that there is such that

. We repeat the above argument to
derive that there is such that

.
Case 2) . The argument is symmetric to that of

Case 1. We point out that, in the present case, (R3)
of QC algorithm is repeatedly applied (as (R2) in the
previous case).

Case 3) . The conclusion follows by
suitably combing the two cases above.

Finally, we need a lemma from [31, Theorem 2.1], which
establishes an important relation between digraph connectivity
and its structure.

Lemma 3: A digraph has a globally reachable node if and
only if it has a unique closed strong component. Furthermore,
this unique closed strong component is the induced subdigraph
by the set of all globally reachable nodes.

Now we are ready to prove Theorem 1.
Proof of Theorem 1: (Necessity) Suppose that does not

have a globally reachable node. By Lemma 3, has at least
two distinct closed strong components, say and . Consider
some initial condition such that all nodes in have the
same state and all nodes in have , but .
Then the quantized consensus is achieved almost never (with
probability 0), for both and are closed.

(Sufficiency) In light of Lemma 1, it suffices to establish the
three conditions (C1)–(C3). For (C1) and (C2), one may readily
verify that they hold under QC algorithm without any connec-
tivity assumption. Thus, it remains to show that (C3) holds when

has a globally reachable node.
If , then is strongly connected, and hence (C3) holds

by Lemma 2. Otherwise, let be the induced subdigraph by
. It then follows from Lemma 3 that is the unique closed

strong component of . We apply Lemma 2 for and derive
that there exist a positive probability and a finite time
such that for all nodes ; evidently, the
integer is in .

Now define , and
its cardinality ; also let .
Since the nodes in are globally reachable, there is an edge
from to , say with and

. Activate this edge with a positive probability, and (R2)
of QC algorithm applies if , or otherwise (i.e.,

) (R3) applies; either update causes ’s state to
approach . Repeatedly, there is such that

; so . We repeat the above
argument to derive that there is such that

, which implies .
Therefore, (C3) follows, and the consensus value is .

C. Role of Randomization

We provide an example which shows that the gossip random-
ization, in addition to modeling asynchronous behavior, can be

Fig. 1. Without randomization, the agents may fail to achieve quantized con-
sensus.

crucial to ensure quantized consensus under QC algorithm. A
similar example, but for the case of undirected graphs, was re-
ported in [26].

Example 1: Consider three agents in cyclic pursuit [see
Fig. 1(a)], with the initial condition . Suppose
that QC algorithm is used, but that the network is non-random-
ized and the edges are activated periodically as follows:

The corresponding state evolution is displayed in Fig. 1(b).
We see that the evolution is, deterministically, trapped in a loop
containing no consensus state. By contrast, randomizing edge
selection ensures that the evolution can break the loop with a
positive probability, thereby leading to almost sure consensus.

This example thus marks a fundamental distinction between
the integer-and the real-state settings. With real-valued states, it
is well known [9], [11], [31] that consensus is guaranteed if
has a globally reachable node uniformly: That is, there exists an
integer such that for every the union has
a globally reachable node. This condition clearly holds in this
example for every ; quantized consensus, however, fails.

IV. QUANTIZED AVERAGE

We move on to solve Problem 2, the quantized average con-
sensus, by appropriately extending QC algorithm studied in the
previous section. A direct application of QC algorithm in gen-
eral fails to ensure convergence to the true (quantized) average,
because the state sum need not be invariant at each iteration,
hence causing the shift of the average. To handle this average
shift, we propose associating to each agent an additional vari-
able, termed surplus. These surpluses are used to keep track of
the state changes of individual agents, so that the information of
the amount of average shift is not lost but kept locally in these
variables. Then the agents communicate the surpluses to their
neighbors for state updates in such a way that the average of the
initial states may be recovered. Further, to assist the use of sur-
pluses, two more auxiliaries are needed, which we call threshold
and local extrema. We use these three augmented elements to
make the extension of QC algorithm.

In the sequel, we first present the extended algorithm, which
we call quantized asymmetric averaging (QA) algorithm. Then
we prove convergence to quantized average under a certain
graphical condition.



CAI AND ISHII: QUANTIZED CONSENSUS AND AVERAGING ON GOSSIP DIGRAPHS 2091

A. QA Algorithm

First, we introduce the three augmented elements.
1) Surplus. Every agent is associated with a surplus variable

to record its state changes. Recall from Section II that the
surplus of agent is denoted by . Thus, the aggregate
surplus is , whose initial value is set to
be . The rules of specifying how these
surpluses are updated locally and communicated over the
network form the core of QA algorithm.

2) Threshold. All agents have a common threshold, denoted
by . This (constant) number is involved in deciding
whether or not to update a state using available surpluses.
A proper value for the threshold will be found crucial to
ensure that the set defined in (3) is the unique invariant
set where all trajectories converge. We shall determine the
range of such threshold values in Section V-A. To keep
the presentation clear, in this section we fix , the
total number of agents in the network. Thus, every agent is
required to know this information.

3) Local extrema. Each agent is further assigned two vari-
ables, and , to record respectively the minimal
and maximal states among itself and its neighbors. These
local extrema will be used to prevent a state, when updated
by available surpluses, from exceeding the interval of all
initial states (i.e., ). For the initial values of
local extrema we set , for every

. We will design updating rules for and as part
of QA algorithm. The necessity of using local extrema in
the algorithm will be exhibited in Section V-B.

Thus, we have augmented the state of each agent from a
single to a tuple of four elements . In addition,
a common threshold needs to be stored. Also note that only
and will be involved in communication.

We are now ready to present QA algorithm. Suppose that
every edge of the communication digraph has a (time-in-
variant) strictly positive probability of being activated. Say edge

is activated at time . Along the edge, node sends to
its state information, , as well as its surplus, . While

it does not perform any update on its state (nor on its local min-
imum and maximum), node does always set its surplus to be
0 after transmission, meaning that the surpluses, if any, are en-
tirely passed to its neighbor ; that is,

On the other hand, node receives the information sent from ,
namely and , and performs the following updates.

1) For local minimum and maximum

2) State and surplus are updated as follows:
(R1) If , then there are three cases:
If and , then

If and , then

Otherwise (i.e., or
and or and

),

(R2) If , then

(R3) If , then

In the algorithm, first observe that the surplus is updated such
that for every ,

. That is, the quantity stays in-
variant at each iteration, and thus equals the initial state sum.
Also, notice that the updates of state in (R2) and (R3) are ex-
actly the same as those in QC algorithm. The difference, how-
ever, lies in (R1): Even when the state coincides with ,
it is still updated if the sum of surpluses, , exceeds the
interval ; here this interval is . This is because,
when the surpluses are more than (resp., less than ), the
true average must be at least (resp., ). Indeed, these
surpluses should be distributed over the network such that every
agent’s state increases by at least 1 (resp., decreases by 1). An
exception, however, is when equals its local maximum (resp.,
local minimum), since in that case, could undesirably exceed

. We illustrate these features of QA algorithm in
the following example.

Example 2: Consider three agents with communication net-
work displayed in Fig. 2. Let the initial condition be as follows:

Hence, the true average is . Suppose that at ,
edge is activated with a positive probability; then (R2) of QA
algorithm applies since . For the possible update
values we let ; the corresponding
state change, , is recorded in the surplus .
Thus, we obtain that

Now the agents reach consensus at value 3. If QC algorithm is
used, then no further update will take place, and consequently
the true average cannot be achieved. However, that agent 1 has
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Fig. 2. Illustration of features of QA algorithm.

surplus indicates that this amount should be dis-
tributed among the three agents, thereby each decreasing its
state by 1. One way to distribute the surplus is to select the edges

, , and sequentially; the probability of this selection is
positive. It can then be readily verified that (R1)(ii), (R3), and
again (R3) of QA algorithm will sequentially apply, and that at

we have

Therefore, the true average is achieved, and there is no
further update because only (R1)(iii) will apply.

B. Convergence Result

We present the main result of this section.
Theorem 2: Using QA algorithm, the agents achieve quan-

tized average almost surely if and only if their communication
digraph is strongly connected.

The necessity and sufficiency proofs of Theorem 2 will be
provided in the next subsection. Presently we draw some re-
marks on this result, in comparison with those related in the lit-
erature.

First of all, Theorem 2 can be seen as an extension of the main
result in [26] from undirected to directed graphs. The problem
of achieving quantized average with directed graphs is, however,
more difficult in that the state sum need not be invariant at each
iteration. Our proposed QA algorithm handles this difficulty, by
an essential augment of surplus variables.

Second, without augmenting extra elements, it is well known
(e.g., [10] and [22]) that a necessary and sufficient graphical
condition for average consensus is that the communication di-
graph is both strongly connected and balanced (or, equivalently,
the system matrix is doubly stochastic). A balanced digraph is
one where every node has the same number of incoming and
outgoing (uniformly weighted) edges. However, this condition
can be difficult to be maintained when the communication is
asynchronous. By contrast, our condition on digraphs does not
require the balanced property, since only one directed edge is
activated at a time. An exemplification was given in Example 2,
where the digraph that is strongly connected but not balanced
achieves average consensus.

Third, we note that in some quantized consensus algorithms
(e.g., [16], [17], and [27]), the agents converge to the average
with an error which could undesirably get large as the number
of agents increases. To address this unscalable situation, several
approaches are proposed using special graph topologies [16],
finer quantizers [17], and probabilistic quantizers [27]. In con-
trast, our result ensures, for a general (strongly connected) graph

and a fixed (deterministic) quantizer, that the quantized average
is always achieved regardless of the number of agents.

The foregoing merits, however, come with some costs which
are twofold: For one, the convergence rate of QA algorithm
is in general slower than that of QC algorithm due to aver-
aging (see a demonstration in Section VI-C). This requires
additional processing based on surpluses even after the agents
achieve consensus (not at the average). For the other, as to
local memories each agent needs to update, in addition to its
state, three more variables—surplus, local minimum, and local
maximum—and needs to store a constant threshold. The corre-
sponding updating computations are, however, purely local and
fairly simple. Moreover, each agent has to transmit surpluses,
along with its state, through communication channels.

Finally, we remark that the issue of finding bounds on the con-
vergence time for QA algorithm is challenging, in that the aug-
mented surplus variables double the state space, thereby making
the algorithm behavior complicated. In addition, for those con-
vergence time analyses on undirected graphs [26], [34], the em-
ployed Lyapunov candidate functions are indeed not valid for
QA algorithm; this is because the evolution of surpluses must
also be taken into account. In view of these difficulties, in this
paper we focus on establishing the convergence results under
QA algorithm.1

C. Proof of Theorem 2

Proof of Necessity: Suppose that is not strongly connected.
Then at least one node of is not globally reachable. Let
denote the set of non-globally reachable nodes; thus, ,
and write its cardinality , . If , then
does not have a globally reachable node. It follows from Lemma
3 that has at least two distinct closed strong components, say

and . Consider some initial condition such that
all nodes in have the same state and all nodes in
have , but . As both and are closed, no state
or surplus update is possible for the nodes in these two sets, and
hence the quantized average is achieved almost never.

Now consider the case . Let denote
the set of all globally reachable nodes, and thus .
By Lemma 3, is the unique closed strong component in .
Consider some initial condition such that all nodes in

have the same state and the state sum of the nodes in
is . It can be readily checked that the total sum of all

initial states is ; hence, the quantized average is .
However, no state or surplus update is possible for the nodes
in for it is closed. Hence, the quantized average is achieved
almost never.

Before proceeding to the sufficiency part, we need to establish
two key lemmas. For their proofs, see the Appendix. Henceforth
in this subsection, we assume that QA algorithm is used and the
digraph is strongly connected.

For an arbitrary pair of state and surplus
, , define as in (4). In the case where all

nodes have the same state (i.e., ), our first result

1We study in [35] the upper bound on the convergence time of QA algorithm
for complete digraphs; even for this special case, the corresponding analysis
turns out to be involved.
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asserts that there is a positive probability such that, in finite time,
all surpluses in the system can pile up at a single node.

Lemma 4: Suppose that at time , the pair
is such that . Fix an arbitrary node . Then
there exists a finite time such that

Next, recall from (2) that , where
. As the quantity is invariant, if all states

are identical to for some , then the total surplus in the
system is . Now suppose that one node increases
its state to and has all the surpluses . In
order to approach the set defined in (3), it is desired that other
nodes follow to the state , thereby decreasing the total
surplus to . Our second result asserts that this can
be done in finite time with a positive probability.

Lemma 5: Suppose that at time , the pair
is such that for one node

and for other nodes

Then there exists a finite time such that

Proof of Sufficiency: Similar to Lemma 1, it suffices to estab-
lish the following three conditions:

(C1) The evolution of , , is a Markov
chain with a finite state space;
(C2) if (resp., ) in (3), then

(resp., ) for all ;
(C3) for every there is a finite time such
that .

For (C1): Letting , we must show that

This follows directly from the gossip setup where at time one
edge is activated at random and independently from all earlier
instants. Next, for finiteness we will show first for the state ,
and then for the surplus .

1) For it will be shown, by induction, that for all it
holds . This
is clearly true for . Suppose that

. It then fol-
lows from the updating rules of local extrema in QA algo-
rithm that . Now
for state, assume on the contrary that there exists some
node such that . Consider the case

; this can occur only when (R1)(i) of QA

algorithm applies to the following situation: At time ,
for some node the edge is activated, and the fol-
lowing conditions are met:

But the first and third conditions together imply that
, which contradicts the hypothesis.

The argument for the other case is just
symmetric; a contradiction arises between the conditions
that satisfy (R1)(ii) of QA algorithm and the hypoth-
esis. Therefore, , and
hence a trivial upper bound for the set of states is

.
2) For , it follows from

that the minimal and maximal values that the surpluses can
take are respectively and ;
namely, .
Hence, the set of surpluses is finite, a trivial upper
bound on its cardinality being .

For (C2): First consider the case , i.e.,

Then for an arbitrary edge activated

Recall that the threshold is . Thus (R1)(iii) of QA algo-
rithm applies, and the subsequent states and surpluses satisfy

for all . Next, consider the other
case (when ), i.e.,

Similarly, for an arbitrary edge activated

Again (R1)(iii) of QA algorithm applies, and hence
for all .

For (C3): Let , , be arbitrary. If
, then it is obtained by letting

that . Otherwise
(i.e., ), we consider respectively the two cases

and as follows.
1) . We have shown that

; so . First
consider the case . Choose a
node such that ; namely, node has the
maximal initial state. Then, by Lemma 4 we derive that
there exists a finite time such that
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If , then and
thus , but ; hence,

, and consequently .
Letting we obtain the conclusion. Otherwise,
( for some ),
we have and

. As is strongly connected, there must exist another
node with an edge . Along this edge the
following conditions hold:

When this edge is activated, (R1)(i) of QA algorithm ap-
plies:

Now the conditions of Lemma 5 are met; we hence obtain
that there exists a finite time such that

Repeating the above process, we derive a sequence of times
, and at the last time

Set and (C3) holds. In the other case
, (C3) similarly holds by a sym-

metric argument.
2) . Write and fix

a node . Recall from Lemma 2 that under QC al-
gorithm for general consensus, if the digraph is strongly
connected, then there exists a finite time such that

. It is important to note that
only (R2) and (R3) of QC algorithm are used in proving
Lemma 2, but these two rules for the state updates are ex-
actly the same in QA algorithm. Thus, under QA algorithm,
we derive that

Hence, and the
situation is that in 1), for which (C3) is established.

The key idea of the foregoing proof is to collect all the sur-
pluses in the system at some agent. Then this agent can deter-
mine whether or not the overall surplus exceeds the threshold;
if it does, indicating that the true average is not yet reached, this
agent should proceed to update its state so that the extra sur-
pluses may be distributed over the network. This process is re-
peated until the overall surplus falls below the threshold. This is,

indeed, the primary reason which slows down the convergence
rate of QA algorithm.

It is also worth pointing out that both the necessity and suffi-
ciency proofs hold even if the surpluses, if any, are transmitted
one unit at a time; namely, the transmitted surpluses may take
values only from the set { 1, 0, 1}. In that case, when there
is more than one-unit surplus to be passed from node to , we
may consecutively select edge for communication until all
surpluses are transmitted. Such a selection, by our gossip setup,
is with a positive probability. As a result, the transmission of
surpluses requires merely two bits increase in communication.

Lastly, notice that the conditions (C1) and (C2) are estab-
lished without any connectivity property of the digraph. Also,
it follows from (C2) and (C3) that is, indeed, the unique in-
variant set to which all trajectories converge.

V. THRESHOLD AND LOCAL EXTREMA

In this section, we provide further analyses on the threshold
and local extrema in QA algorithm. First, we find the range of
threshold values which permits the agents to converge to the
invariant set . Second, we demonstrate that for QA algorithm
the local extrema are necessary in order to keep the state set
bounded.

A. Threshold Range

As we have seen in Section IV, the threshold value in QA
algorithm serves as a bound such that whenever the surpluses
exceed this bound, they should be distributed over the network.
So far, we have assumed the threshold to be the total number

of agents in the network, and proved that all pairs of states
and surpluses converge to the invariant set . Now we proceed
to investigate the systemic behavior when . In particular,
we aim at finding the range of threshold values necessary and
sufficient to ensure that is the unique invariant set to which all
trajectories converge. This investigation is important because if
the threshold has to be exactly in order to guarantee average
consensus, then QA algorithm may not be robust in applications
where some agents could fail and/or new agents could join.

We present the main result of this subsection: The range of
suitable threshold values turns out to be , which
may be fairly large in practice.

Theorem 3: Suppose that the communication digraph is
strongly connected and QA algorithm is used. Then is the
unique invariant set to which all trajectories converge if and only
if the threshold satisfies .

To prove Theorem 3 we need the following lemma. For a fixed
, define

; thus, is the family of initial states whose sums, when
divided by , have remainder for some quotient . Clearly

form a partition of the set of all initial states.
Lemma 6: Under QA algorithm, fix .
i) If the threshold satisfies , then is an invariant

set for every pair starting from .
ii) If , then is an invariant set for every

pair starting from .
The proof is similar to that for (C2) in Theorem 2.
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Fig. 3. Relationship between threshold values and the invariant set ��� � ���.

More generally, let and ,
where are as in (4). For , ,
define the following subsets of :

Similar to Lemma 6, we obtain for a fixed that i)
if the threshold , then is an invariant set
for every pair starting from ; ii) if

, then is an invariant set for every pair
starting from .

Remark 1: It is straightforward from the above derivation that
the following hold:

i) If the threshold , then is an invariant
set for some pairs .

ii) If , then is an invariant set for
some pairs .

Now we are ready to prove Theorem 3.
Proof of Theorem 3: (Necessity) Assume the threshold

. First consider the case . By Lemma 6,
neither nor is an invariant set at least for those pairs

starting from with . Namely,
is not an invariant set for all pairs . For the other

case , it follows from Remark 1 (i) that at least
is an invariant set for some pairs . Hence, is not
the unique one for all pairs .

(Sufficiency) Let the threshold . Then, we
derive by Lemma 6 that i) is an invariant set at least for those
pairs starting from , ;
ii) is an invariant set at least for those pairs
starting from , , but

if is even, or otherwise .
Consequently, is an invariant set for all pairs . In
addition, similar to (C3) in the proof of Theorem 2 we can show
that with a positive probability, every pair will
enter in finite time. Hence, there is no other invariant set, and

is the unique one to which all trajectories converge.
Summarizing the results in Theorem 3 and Remark 1, we con-

clude that for all pairs , i) when the threshold sat-
isfies , there is no invariant set; ii) when

, is the unique invariant set; iii) when
, the invariant set expands as increases, but lower

Fig. 4. Without local extrema the states can grow arbitrarily large.

bounded by and upper bounded by . This relation-
ship between threshold values and the invariant set is displayed
in Fig. 3.

B. Role of Local Extrema

In QA algorithm, the local extrema , are used
to ensure that all the states , , remain within the
interval of the initial states (i.e., ). In this subsec-
tion, we provide an example which exhibits that without local
extrema the states can grow arbitrarily large, thereby showing
the necessity of using these variables in the algorithm.

Example 3: Consider six agents with the communication net-
work in Fig. 4. Let the initial condition be as follows:

Suppose that QA algorithm is used, but without the conditions
involving local extrema in (R1). Also specify that

in (R2),
in (R3), and the threshold . Now consider the string of
edges, , being activated sequentially, and denote
by the time after these activations. Then one may
verify that

Thus, the upper bound of the initial states, , is ex-
ceeded by 3. Next, consider the string, ,
and denote by the time after sequentially activating
these edges. We then derive that

Thus, the initial lower upper bound, , is exceeded
by 11. As such, one may go on constructing similar strings of
edges, and the states will grow arbitrarily large with a positive
probability.

We have thus seen that in general the local extrema are nec-
essary in order to keep the state set bounded. Only in a special
case where the threshold equals exactly ; however, we find it
is possible to avoid using local extrema by suitably modifying
QA algorithm. This modification is sketched below.

In (R2), we prevent the state from increasing unless
there are positive surpluses to be used. Thus no negative sur-
plus can be generated, and the minimum , , is non-
decreasing; the latter implies that there is an upper bound for
the maximum . Therefore, this modification guarantees
bounded state set without the aid of local extrema. On the other
hand, it is well to note that the agents in this case can achieve
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Fig. 5. Decay of consensus error in QC and real-valued consensus algorithms.

quantized average only at (as otherwise at negative
surplus exists, which is a contradiction). It then follows from
Lemma 6 i) that the threshold has to be exactly in order
to guarantee that is the unique equilibria set for all initial
conditions. For a detailed development of this modified QA al-
gorithm, we refer to [36].

VI. NUMERICAL EXAMPLES

Having proved the convergence results of both general and
average consensus problems, we now provide a set of numerical
examples for illustration, with special emphasis on convergence
time analysis.

A. QC and Real-Valued Consensus Algorithms

First, we compare the convergence rate of QC algorithm with
that of real-valued consensus algorithms [32]. For this we con-
sider a cyclic digraph of 20 agents [cf. Fig. 1(a)], whose ini-
tial (integer) states are chosen uniformly at random from the in-
terval [ 10, 10]. For QC algorithm, we specify that

in (R2) and
in (R3); for the real-valued algorithm let

in all cases. Now define the consensus error
; we compare the decay rates of this

error in both algorithms. Two curves showing the decay trajec-
tories are displayed in Fig. 5, which are the average of 100 runs
of the respective algorithms. Observe that while real-valued al-
gorithm converges asymptotically, QC algorithm converges in
finite time. Prior to the finite convergence, the two error decay
rates are indeed analogous; this observation supports our conjec-
ture on the convergence time of QC algorithm in Section III-B.

B. Convergence Time Versus Number of Agents

We turn next to the study of convergence time with respect to
the number of agents in the network. The states of the agents are
randomly initialized from a uniform distribution on the interval
[ 5, 5].

First, we deal with the increasing rates of convergence time as
the number of agents increases for both QC and QA algorithms
on complete digraphs (i.e., every agent is reachable from every
other agent via a directed edge). The results are respectively the

Fig. 6. Convergence time versus number of agents.

dash-dot and solid curves in Fig. 6, each plotted value being
the average convergence time of 100 runs of the corresponding
algorithms. It is seen that the convergence time of QA algorithm
is longer than that of QC algorithm, which supports our assertion
in Section IV-B that the additional averaging process required in
QA algorithm slows down its convergence.

Second, we do an analogous investigation for QA algorithm
on two types of random digraphs. One type, referred to as
random edge digraphs, is defined as follows (e.g., [20]): The
existence of a directed edge between every pair of agents
is determined randomly, independent of other edges, with a
(possibly non-uniform) positive probability. Hence, in expec-
tation, we obtain complete digraphs. Here for simplicity, we
assume that every edge exists with the same probability . The
other type is the random geometric digraphs (e.g., [37]), which
have been widely used for modeling ad hoc wireless sensor
networks. In two dimensions, a random geometric digraph

denotes a network of agents whose transmission
radius is within . It is obtained by placing agents uniformly
at random in a unit square, and connecting every pair of agents
to each other that are within distance .

In Fig. 6, the dashed and dotted curves show the average con-
vergence time of 100 runs of QA algorithm on random edge
digraphs with and random geometric digraphs with

, respectively. We see that as the network expands,
the increasing rates of convergence time in these two cases are
roughly of the same polynomial order; this indicates that the
graph connectivity resulted from the chosen parameters might
be similar.

In addition, the convergence time of QA algorithm is longer
on random digraphs than on complete digraphs. This is due
evidently to the parameter choices, for complete digraphs can
be viewed as special random digraphs by setting or

. To further illustrate this point, we display the conver-
gence sample paths of random edge and complete digraphs for
50 agents, corresponding to the first plotted value in Fig. 6. For
random edge digraphs, we exhibit in Fig. 7 the case where the
initial state sum is , hence the true average
being either 1 or 0. The trajectories show that the states con-
verge to 1, and the corresponding total surplus settles at 42.
Note that the convergence time of this sample path is ;
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Fig. 7. Convergence sample path of 50 agents on random edge digraphs.

Fig. 8. Convergence sample path of 50 agents on complete digraphs.

for 100 runs of QA algorithm we obtain the average convergence
time .

For complete digraphs, Fig. 8 displays the example where the
initial state sum is ; the true average is thus ei-
ther 0 or 1. We see that all states converge to 1, with the steady
state surplus being 13. This convergence takes only
time steps; also the average of 100 runs of QA algorithm is
merely . Thus, larger value of the parameter gives
rise to higher graph connectivity, and therefore accelerates the
convergence speed.

C. Convergence Time Versus Threshold Value

In Section V-A, we have justified that the threshold in QA al-
gorithm can take values in the range so as to guar-
antee convergence to the average consensus set . Here we pro-
vide an example to show the impact of different threshold values
(in the valid range) on the convergence time of QA algorithm.
Consider a complete digraph of 50 agents, with random initial
states in [ 5, 5]. In Fig. 9, we plot the average convergence
time over 100 runs of QA algorithm, for each valid threshold
value ranging from 26 to 50. We can observe an increasing trend
of convergence time as the threshold value increases. This is
mainly because with a smaller threshold, the decision on dis-
tributing surpluses over the network can be made potentially
faster, hence accelerating the averaging process.

Fig. 9. Impact of threshold values on convergence time of QA algorithm.

VII. CONCLUSION

In this paper, we have studied distributed consensus problems
in the setup where the states are quantized and the networks are
directed and randomized. The central problem investigated is
how to design distributed algorithms and what connectivity of
the networks that together lead to consensus. First, we have de-
signed QC algorithm, and derived that the existence of a globally
reachable node in the network is a necessary and sufficient con-
dition ensuring general consensus. To further achieve average
consensus, we have proposed QA algorithm, and derived a nec-
essary and sufficient condition that the network is strongly con-
nected. To illustrate the performance of these algorithms, we
have provided a numerical study laying stress on convergence
rate analysis.

An immediate problem for future research is to obtain the-
oretical bounds, as functions of the number of agents, on
the mean convergence time of the proposed algorithms. In ad-
dition, the issue of devising other faster quantized consensus
and averaging algorithms deserves further effort. Finally, the
proposed surplus-based averaging approach exploits the idea of
augmenting an auxiliary state variable to achieve average con-
sensus for general unbalanced networks; a similar idea is also
employed in [38] to accelerate the convergence rate of gossip
algorithms. These developments suggest that providing an aug-
mented state for individual agents could potentially enable the
whole network to accomplish some more demanding tasks, and
is therefore worth being applied to addressing other distributed
control problems.

APPENDIX

Proof of Lemma 4: Fix a node in and denote it by . As
is strongly connected, for each there is a directed path

from to . The length of a path is defined to be the number
of its edges. Now let be the minimal length of all the paths
from to . Partition the set of nodes into ,
for some , with
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Fig. 10. The idea of the proof for Lemma 4.

It is evident that there always exists such that are
nonempty, disjoint, and . In the following
we describe the sequence of activating edges which causes all
surpluses in the system to pile up at in finite time, the idea
being visualized in Fig. 10. Owing to that each edge in has a
positive probability to be activated, this sequence of activation
also enjoys a positive probability. We now proceed by induction.

First, take an arbitrary node and activate edge .
By assumption ; thus, only (R1) of QA algo-
rithm applies. If it is the case (R1)(iii), then

(5)

Otherwise (i.e., the case (R1)(i)/(ii)):

in either case, activate edge again. This time (R3)/(R2)
of QA algorithm applies, yielding

Hence,

(6)

We see in (5) and (6) that the state is the same and the surplus of
comes to . Repeating the foregoing process for every other

node in , we derive that there must exist a finite time
such that

Now suppose that there is a finite time (for
some ) such that

Let . Then there must exist a directed path from to :
for some

. First activate edge . By hypothesis
; thus, only (R1) of QA algorithm applies. The present

situation is the same as that in the base case—if it is (R1)(iii), no
further activation takes place; otherwise, activate edge
once more. As in (5) and (6) we obtain that there is
such that

Now sequentially for the edges , there is
a sequence of times such that

...

From these derivations and the hypothesis, it follows that

Hence, at time , the state is the same and the surplus of
comes to . Repeating the same process for every other node in

, we derive that there must exist a finite time such
that

This completes the induction step. The conclusion follows by
letting .

Proof of Lemma 5: First, for define two subsets of
nodes with states and , respectively, by

and
. Let their cardinalities be and

. Denote by the node that has state
and surplus at time . By assumption

(7)

In the following, we show that there is a positive probability
such that all nodes in will enter one by one in finite time;
we proceed by induction.

Consider the base case in (7). Since is strongly connected,
there must exist a directed edge for some . If
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Fig. 11. The idea of the proof for Lemma 5.

this edge is activated, (R2) of QA algorithm will apply because
. In that case,

Hence, the following hold at time with a positive
probability:

where . That is, node enters , and holds
all the surpluses.

Now suppose that there is a positive probability such that, at
time (for some )

where . For choose a node
such that the directed path from to

is one of the shortest from the node to the set
(see Fig. 11). Let be the corresponding length, and denote this
path by . Notice that the nodes

are all in , because otherwise this
path is not one of the shortest from to . Hence, for
the path Lemma 4 applies, by which
all the states of these nodes remain the same and all the surpluses
(currently held by ) may pile up at any chosen node. Here
we choose this node to be , and obtain that there is a positive
probability such that at time

Subsequently we activate edge ; since
, (R2) of QA algorithm applies:

Hence, the following hold at time with a positive
probability:

where . This establishes the induction.
Letting we derive that at time and with a positive
probability, all nodes have state , i.e.,

the node , which enters lastly, holds all the surpluses,
i.e.,

Finally, we invoke again Lemma 4 to collect all the surpluses in
the system (currently held by ) at node , and the conclu-
sion ensues.
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