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Abstract Recently we proposed relative observability for supervisory control of discrete-
event systems under partial observation. Relative observability is closed under set unions
and hence there exists the supremal relatively observable sublanguage of a given language.
In this paper we present a new characterization of relative observability, based on which
an operator on languages is proposed whose largest fixpoint is the supremal relatively
observable sublanguage. Iteratively applying this operator yields a monotone sequence of
languages; exploiting the linguistic concept of support based on Nerode equivalence, we
prove for regular languages that the sequence converges finitely to the supremal relatively
observable sublanguage, and the operator is effectively computable. Moreover, for the pur-
pose of control, we propose a second operator that in the regular case computes the supremal
relatively observable and controllable sublanguage.
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1 Introduction

In Cai et al. (2015) we proposed relative observability for supervisory control of discrete-
event systems (DES) under partial observation. The essence of relative observability is to set
a fixed ambient language relative to which the standard observability conditions (Lin and
Wonham 1988) are tested. Relative observability is proved to be stronger than observabil-
ity (Lin and Wonham 1988; Cieslak et al. 1988), weaker than normality (Lin and Wonham
1988; Cieslak et al. 1988), and closed under arbitrary set unions. Therefore the supre-
mal relatively observable sublanguage of a given language exists, and we developed an
automaton-based algorithm to compute the supremal sublanguage. Other recent work on
supervisory control under partial observation is reported in Yin and Lafortune (2016) and
Cai et al. (2016).

In this paper and its conference precursor (Cai and Wonham 2016), we present a new
characterization of relative observability. The original definition of relative observability
in Cai et al. (2015) was formulated in terms of strings, while the new characterization is
given in languages. Based on this characterization, we propose an operator on languages,
whose largest fixpoint is precisely the supremal relatively observable sublanguage. Itera-
tively applying this operator yields a monotone sequence of languages. In the case where
the relevant languages are regular, we prove that the sequence converges finitely (albeit with
exponential computing effort) to the supremal relatively observable sublanguage, and the
operator is effectively computable.

This new computation scheme for the supremal sublanguage is given entirely in terms
of languages, and the convergence proof systematically exploits the concept of support
(Wonham 2016, Section 2.8) based on Nerode equivalence relations (Hopcroft and Ullman
1979). The solution therefore separates out the linguistic essence of the problem from the
implementational aspects of state computation using automaton models. This approach is
in the same spirit as Wonham and Ramadge (1987) for controllability, namely operator
fixpoint and successive approximation.

Moreover, the proposed language-based scheme allows more straightforward implemen-
tation, as compared to the automaton-based algorithm in Cai et al. (2015). In particular, we
show that the language operator used in each iteration of the language-based scheme may be
decomposed into a series of standard or well-known language operations (e.g. complement,
union, subset construction); therefore off-the-shelf algorithms may be suitably assembled
to implement the computation scheme. Our previous experience with the automaton-based
algorithm in Cai et al. (2015) suggests that computing the supremal relatively observable
sublanguage is fairly delicate and thus prone to error. Hence, it is advantageous to have two
algorithms at hand so that one can double check the computation results, thereby ensuring
presumed correctness based on consistency.

Finally, for the purpose of supervisory control under partial observation, we combine
relative observability with controllability. In particular, we propose an operator which in
the regular case effectively computes the supremal relatively observable and controllable
sublanguage.

We note that Alves et al. (2016) recently proposed an algorithm that also computes
the supremal relatively observable sublanguage and has exponential complexity with a
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lower-degree polynomial multiplier than our language-based algorithm (see Remark 2
below for details). This algorithm, like the one in Cai et al. (2015), is automaton-based; thus
it provides little insight into the linguistic meaning of the operations at each iteration, and
may not be decomposable into a set of well-known language computations. We also note
that Moor et al. (2012) studied a general scheme of combining operators that iteratively
compute supremal sublanguages with different properties. In this scheme, however, indi-
vidual operators are applied only to prefix-closed languages. Consequently the scheme is
generally not applicable to our problem where marked languages are considered to address
nonblocking.

The rest of the paper is organized as follows. In Section 2 we present a new characteriza-
tion of relative observability, and an operator on languages that yields an iterative scheme to
compute the supremal relatively observable sublanguage. In Section 3 we prove that in the
case of regular languages, the iterative scheme generates a monotone sequence of languages
that is finitely convergent to the supremal relatively observable sublanguage. In Section 4
we combine relative observability and controllability, and propose an operator that effec-
tively computes the supremal relatively observable and controllable sublanguage. Finally in
Section 5 we state conclusions.

This paper extends its conference precursor (Cai and Wonham 2016) in the following
respects. (1) In the main result of Section 3, Theorem 7, the bound on the size of the
supremal sublanguage is tightened and the corresponding proof given. (2) The effective
computability of the proposed operator is shown in Section 3.3. (3) Relative observability is
combined with controllability in Section 4, and a new operator is presented that effectively
computes the supremal relatively observable and controllable sublanguage.

2 Characterizations of relative observability and its supremal element

In this section, the concept of relative observability proposed in Cai et al. (2015) is first
reviewed. Then we present a new characterization of relative observability, together with a
fixpoint characterization of the supremal relatively observable sublanguage.

2.1 Relative observability

Let � be a finite event set. A string s ∈ �∗ is a prefix of another string t ∈ �∗, written
s ≤ t , if there exists u ∈ �∗ such that su = t . Let L ⊆ �∗ be a language. The (prefix)
closure of L is L := {s ∈ �∗ | (∃t ∈ L) s ≤ t}. For partial observation, let the event
set � be partitioned into �o, the observable event subset, and �uo, the unobservable subset
(i.e. � = �o∪̇�uo). Bring in the natural projection P : �∗ → �∗

o defined according
to

P(ε) = ε, ε is the empty string;

P(σ) =
{

ε, if σ /∈ �o,

σ, if σ ∈ �o;
P(sσ ) = P(s)P (σ ), s ∈ �∗, σ ∈ �.

(1)

In the usual way, P is extended to P : Pwr(�∗) → Pwr(�∗
o ), where Pwr(·) denotes

powerset. Write P −1 : Pwr(�∗
o ) → Pwr(�∗) for the inverse-image function of P .

Throughout the paper, let M denote the marked behavior of the plant to be controlled,
and C ⊆ M an imposed specification language. Let K ⊆ C. We say that K is relatively
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observable (with respect to M , C, and P ), or simply C-observable, if the following two
conditions hold:

(i) (∀s, s′ ∈ �∗,∀σ ∈ �) sσ ∈ K, s′ ∈ C, s′σ ∈ M, P(s) = P(s′) ⇒ s′σ ∈ K

(ii) (∀s, s′ ∈ �∗) s ∈ K, s′ ∈ C ∩ M,P (s) = P(s′) ⇒ s′ ∈ K.

In words, relative observability of K requires for every lookalike pair (s, s′) in C that (i) s

and s′ have identical one-step continuations, if allowed in M , with respect to membership
in K; and (ii) if each string is in M and one actually belongs to K , then so does the other.
Note that the tests for relative observability of K are not limited to the strings in K (as with
standard observability (Lin and Wonham 1988; Cieslak et al. 1988)), but apply to all strings
in C; for this reason, one may think of C as the ambient language, relative to which the
conditions (i) and (ii) are tested.

We have proved in Cai et al. (2015) that in general, relative observability is stronger than
observability, weaker than normality, and closed under arbitrary set unions. This implies that
the relatively observable controlled behavior is generally more permissive than the normal
one; in particular, one may disable any controllable events that are unobservable. Since a
relatively observable language is also observable, one may always implement the language
by a feasible and nonblocking supervisor (Wonham 2016).

Write

O(C) = {K ⊆ C | K is C-observable} (2)

for the family of all C-observable sublanguages of C. Then O(C) is nonempty (the empty
language ∅ belongs) and contains a unique supremal element

supO(C) :=
⋃

{K | K ∈ O(C)} (3)

i.e. the supremal relatively observable sublanguage of C.

2.2 Characterization of relative observability

For N ⊆ �∗, write [N ] for P −1P(N), namely the set of all lookalike strings to strings in
N . A language N is normal with respect to M if [N ] ∩ M = N . For K ⊆ �∗ write

N (K,M) = {K ′ ⊆ K | [K ′] ∩ M = K ′}. (4)

Since normality is closed under union, N (K,M) has a unique supremal element
supN (K,M) which may be effectively computed (Cho and Marcus 1989; Brandt et al.
1990; Kumar et al. 1993).

Write

C.σ := {sσ | s ∈ C}, σ ∈ �. (5)

Let K ⊆ C and define

D(K) :=
⋃ {[K ∩ C.σ ] ∩ C.σ | σ ∈ �

}
. (6)

Thus D(K) is the collection of strings of the form tσ (t ∈ C, σ ∈ �), that are lookalike
to the strings in K ending with the same event σ . Note that if K = ∅ then D(K) = ∅. For
a string s ∈ K , write s̄ for {s}, the set of prefixes of s; it is easily verified that for t ∈ �∗,
if t ∈ D(s̄) then t ∈ D(K). This language D(K) turns out to be key to the following
characterization of relative observability.
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Proposition 1 Let K ⊆ C ⊆ M . Then K is C-observable if and only if

(i′) D(K) ∩ M ⊆ K

(ii′) [K] ∩ (
C ∩ M

) = K.

Note that condition (i′) is in a form similar to controllability ofK (Wonham and Ramadge
1987) (i.e. K�u ∩ M ⊆ K , where �u is the uncontrollable event set), although the expres-
sion D(K) appearing here is more complicated owing to the presence of the normality
operator [·]. Condition (ii′) is simply normality of K with respect to C ∩ M .

Proof of Proposition 1. We first show that (i′) ⇔ (i), and then (ii′) ⇔ (ii).

1. (i′) ⇒ (i). Let s, s′ ∈ �∗, σ ∈ �, and assume that sσ ∈ K , s′ ∈ C, s′σ ∈ M , and
P(s) = P(s′). It will be shown that s′σ ∈ K . Since K ⊆ C, we have K ⊆ C and

sσ ∈ K ⇒ sσ ∈ K ∩ C.σ

⇒ s′σ ∈ [K ∩ C.σ ]
⇒ s′σ ∈ [K ∩ C.σ ] ∩ C.σ

⇒ s′σ ∈ D(K)

⇒ s′σ ∈ D(K) ∩ M

⇒ s′σ ∈ K (by(i′)).

2. (i′) ⇐ (i). Let s ∈ D(K) ∩ M . According to Eq. 6 ε /∈ D(K); thus s �= ε. Let s = tσ

for some t ∈ �∗ and σ ∈ �. Then

s ∈ D(K) ∩ M ⇒ tσ ∈ [K ∩ C.σ ] ∩ C.σ ∩ M

⇒ t ∈ C, tσ ∈ M,

(∃t ′ ∈ �∗)(P (t) = P(t ′), t ′σ ∈ K ∩ C.σ)

⇒ tσ ∈ K, (by (i))

⇒ s ∈ K.

3. (ii′) ⇒ (ii). Let s, s′ ∈ �∗ and assume that s ∈ K , s′ ∈ C∩M , and P(s) = P(s′). Then

s ∈ K ⇒ s′ ∈ [K]
⇒ s′ ∈ [K] ∩ C ∩ M

⇒ s′σ ∈ K (by(ii′)).

4. (ii) ⇒ (ii′). (⊇) holds because K ⊆ [K] and K ⊆ C ∩ M . To show (⊆), let s ∈ [K]
and s ∈ C ∩ M . Then there exists s′ ∈ K such that P(s) = P(s′). Therefore by (ii) we
derive s ∈ K .

Thanks to the characterization of relative observability in Proposition 1, we rewriteO(C)

in Eq. 2 as follows:

O(C) = {K ⊆ C | D(K) ∩ M ⊆ K & [K] ∩ (
C ∩ M

) = K}. (7)

In the next subsection, we will characterize the supremal element supO(C) as the largest
fixpoint of a language operator.
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2.3 Fixpoint characterization of supO(C)

Given a language K ⊆ �∗, let
F(K) := {s ∈ K | D(s̄) ∩ M ⊆ K}. (8)

Lemma 2 F(K) is closed, i.e. F(K) = F(K). Moreover, F(K) = K if and only if D(K)∩
M ⊆ K .

Proof First, let s ∈ F(K); then there exists w ∈ �∗ such that sw ∈ F(K), i.e. sw ∈ K

and D(sw) ∩ M ⊆ K . It follows that s ∈ K and D(s) ∩ M ⊆ K , namely s ∈ F(K). This
shows that F(K) ⊆ F(K); the other direction F(K) ⊇ F(K) is automatic.

Next, we show that F(K) = K if and only if D(K) ∩ M ⊆ K . (If) Suppose that
D(K) ∩ M ⊆ K . Let s ∈ K; it will be shown that D(s̄) ∩ M ⊆ K . Taking an arbitrary
string t ∈ D(s̄) ∩ M , by s ∈ K we derive t ∈ D(K) ∩ M . This shows that s ∈ F(K) by
Eq. 8, and hence K ⊆ F(K). The other direction F(K) ⊆ K is automatic.

(Only if) Suppose that F(K) = K . In what follows it will be shown thatD(F(K))∩M ⊆
F(K), which is equivalent to D(K) ∩ M ⊆ K . Let s ∈ D(F(K)) ∩ M . As in the proof of
Proposition 1 (item 2), we know that s �= ε. So let s = tσ for some t ∈ �∗ and σ ∈ �. Then

s ∈ D(F(K)) ∩ M ⇒ tσ ∈ [F(K) ∩ C.σ ] ∩ C.σ ∩ M

⇒ (∃t ′ ∈ C)P (t) = P(t ′), t ′σ ∈ F(K)

⇒ D(t ′σ) ∩ M ⊆ K (by definition of F(K)).

Then by Eq. 6 ⋃ {
[t ′σ ∩ C.σ ] ∩ C.σ | σ ∈ �

}
∩ M ⊆ K.

Since tσ belongs to the left-hand-side of the above inequality, we have tσ ∈ K = F(K).
Therefore D(F(K)) ∩ M ⊆ F(K); equivalently D(K) ∩ M ⊆ K .

Now define an operator � : Pwr(�∗) → Pwr(�∗) according to
�(K) := supN

(
K ∩ F(K), C ∩ M

)
, K ∈ Pwr(�∗). (9)

A language K such that K = �(K) is called a fixpoint of the operator �. The following
proposition characterizes supO(C) as the largest fixpoint of �.

Proposition 3 supO(C) = �(supO(C)), and supO(C) ⊇ K for every K such that
K = �(K).

To prove Proposition 3, it is useful to note the following. Let �1, �2 : Pwr(�∗) →
Pwr(�∗) be defined as

�1(K) := K ∩ F(K)

�2(K) := supN
(
K, C ∩ M

)
.

Then �(K) = �2(�1(K)) = �2 ◦�1(K), i.e. � in Eq. 9 is the composition of �1 and �2.
By Lemma 2 (the second statement), it is easily checked that

K = �1(K) ⇔ D(K) ∩ M ⊆ K;
namely K is a fixpoint of �1 if and only if K satisfies the first characterizing condition (i′)
of C-observablity. In addition, by definition of �2 we have

K = �2(K) ⇔ [K] ∩ (
C ∩ M

) = K;
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namely K is a fixpoint of �2 if and only if K satisfies the second characterizing condition
(ii′) of C-observablity. The above two statements together imply that

K = �(K) ⇔ D(K) ∩ M ⊆ K & [K] ∩ (
C ∩ M

) = K

⇔ K ∈ O(C)

which means that K is a fixpoint of � if and only if K is C-observable. With this, the proof
of Proposition 3 follows immediately.

Proof of Proposition 3. Since supO(C) ∈ O(C), it holds that supO(C) = �(supO(C)).
Moreover, let K be such that K = �(K). Then K ∈ O(C), and therefore K ⊆ supO(C).

In view of Proposition 3, it is natural to attempt to compute supO(C) by iteration of �

as follows:
(∀j ≥ 1) Kj = �(Kj−1), K0 = C. (10)

It is readily verified that �(K) ⊆ K; hence

K0 ⊇ K1 ⊇ K2 ⊇ · · ·
Namely the sequence {Kj } (j ≥ 1) is a monotone (descending) sequence of languages. This
implies that the (set-theoretic) limit

K∞ := lim
j→∞ Kj =

∞⋂
j=0

Kj (11)

exists. The following result asserts that if K∞ is reached in a finite number of steps, then
K∞ is precisely the supremal relatively observable sublanguage of C, i.e. supO(C).

Proposition 4 If K∞ in Eq. 11 is reached in a finite number of steps, then

K∞ = supO(C).

Proof Since K∞ is the limit of the monotone sequence {Kj } (j ≥ 1), for every fixpoint K
of �, i.e. K = �(K), there holds K∞ ⊇ K . In particular K∞ ⊇ supO(C), for supO(C)

is a fixpoint of �.
Now suppose that the limit K∞ is reached in a finite number of steps. Then K∞ =

�(K∞), and hence K∞ ∈ O(C). This shows that K∞ ⊆ supO(C), and completes the
proof.

In the next section, we shall establish that, when the given languages M and C are
regular, the limit K∞ in Eq. 11 is indeed reached in a finite number of steps.

3 Effective computation of supO(C) in the regular case

In this section, we first review the concept of Nerode equivalence relation and a finite con-
vergence result for a sequence of regular languages. Based on these, we prove that the
sequence generated by Eq. 10 converges to the supremal relatively observable sublanguage
supO(C) in a finite number of steps. Finally, we show that the computation of supO(C) is
effective.
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3.1 Preliminaries

Let π be an arbitrary equivalence relation on �∗. Denote by �∗/π the set of equivalence
classes of π , and write |π | for the cardinality of �∗/π . Define the canonical projection
Pπ : �∗ → �∗/π , namely the surjective function mapping any s ∈ �∗ onto its equivalence
class Pπ(s) ∈ �∗/π .

Let π1, π2 be two equivalence relations on �∗. The partial order π1 ≤ π2 holds if

(∀s1, s2 ∈ �∗) s1 ≡ s2(mod π1) ⇒ s1 ≡ s2(mod π2).

The meet π1 ∧ π2 is defined by

(∀s1, s2 ∈ �∗) s1 ≡ s2(mod π1 ∧ π2) iff s1 ≡ s2(mod π1) & s1 ≡ s2(mod π2).

For a language L ⊆ �∗, write Ner(L) for the Nerode equivalence relation (Hopcroft and
Ullman 1979) on �∗ with respect to L; namely for all s1, s2 ∈ �∗, s1 ≡ s2(mod Ner(L))

provided
(∀w ∈ �∗) s1w ∈ L ⇔ s2w ∈ L.

Write ||L|| for the cardinality of the set of equivalence classes of Ner(L), i.e. ||L|| :=
|Ner(L)|. The language L is said to be regular (Hopcroft and Ullman 1979) if ||L|| < ∞.
Henceforth, we assume that the given languages M and C are regular.

An equivalence relation ρ is a right congruence on �∗ if

(∀s1, s2, t ∈ �∗) s1 ≡ s2(mod ρ) ⇒ s1t ≡ s2t (mod ρ).

Any Nerode equivalence relation is a right congruence. For a right congruence ρ and lan-
guages L1, L2 ⊆ �∗, we say that L1 is ρ-supported on L2 (Wonham 2016, Section 2.8) if
L1 ⊆ L2 and

{L1, �
∗ − L1} ∧ ρ ∧ Ner(L2) ≤ Ner(L1). (12)

Here {L1, �
∗ − L1} is the equivalence relation on �∗ with two equivalence classes: L1

and �∗ − L1. The ρ-support relation is transitive: namely, if L1 is ρ-supported on L2, and
L2 is ρ-supported on L3, then L1 is ρ-supported on L3. The following lemma is central to
establish finite convergence of a monotone language sequence.

Lemma 5 (Wonham 2016, Theorem 2.8.11) Given a monotone sequence of languages
K0 ⊇ K1 ⊇ K2 ⊇ · · · with K0 regular, and a fixed right congruence ρ on �∗ with
|ρ| < ∞, suppose that Kj is ρ-supported on Kj−1 for all j ≥ 1. Then each Kj is regular,
and the sequence is finitely convergent to a sublanguage K . Furthermore, K is ρ-supported
on K0 and

||K|| ≤ |ρ| · ||K0|| + 1.

In view of this lemma, to show finite convergence of the sequence in Eq. 10, it suffices
to find a fixed right congruence ρ with |ρ| < ∞ such that Kj is ρ-supported on Kj−1 for
all j ≥ 1. To this end, we need the following notation.

Let μ := Ner(M), η := Ner(C) be Nerode equivalence relations and

ϕj := {F(Kj ),�
∗ − F(Kj )}, κj := {Kj ,�

∗ − Kj } (j ≥ 1)

also stand for the equivalence relations corresponding to these partitions. Then |μ| < ∞,
|η| < ∞, and |ϕj | = |κj | = 2. Let π be an equivalence relation on �∗, and define fπ :
�∗ → Pwr(�∗/π) according to

(∀s ∈ �∗) fπ (s) = {Pπ(s′) | s′ ∈ [s] ∩ (
C ∩ M

)} (13)
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where [s] = P −1P({s}). Denote by ker fπ the equivalence kernel of fπ , i.e.

(∀s, s′ ∈ �∗) s ≡ s′(mod ker fπ) iff fπ(s) = fπ(s′).
Write ℘(π) := ker fπ . Thus ℘(π) is an equivalence relation on �∗ described as follows:
two strings are equivalent mod ℘(π) precisely when they have the same subsets of equiva-
lence classes of π containing all the respective lookalike strings. For this reason, ℘(π) may
be viewed as the ‘exponential of π with respect to the natural projection P ’. The size of
℘(π) is |℘(π)| ≤ 2|π | (Wonham 2016, Ex. 1.4.21). Another property of ℘(·) we shall use
later is (Wonham 2016, Ex. 1.4.21):

℘(π1 ∧ ℘(π2)) = ℘(π1 ∧ π2) = ℘(℘(π1) ∧ π2)

where π1, π2 are equivalence relations on �∗.

3.2 Convergence result

First, we present a key result on the support relation of the sequence {Kj } generated by
Eq. 10.

Proposition 6 Consider the sequence {Kj } generated by Eq. 10. For each j ≥ 1, there
holds that Kj is ρ-supported on Kj−1, where

ρ := μ ∧ η ∧ ℘(μ ∧ η). (14)

The equivalence classes of ρ in Eq. 14 are formed by intersecting those of μ, η, and
℘(μ ∧ η). Namely ρ partitions �∗ into cells of strings that are simultaneously in the same
cells of μ, η, and ℘(μ ∧ η). Let us postpone the proof of Proposition 6, and immediately
present our main result.

Theorem 7 Consider the sequence {Kj } generated by Eq. 10, and suppose that the given
languages M and C are regular. Then the sequence {Kj } is finitely convergent to supO(C),
and supO(C) is a regular language with

|| supO(C)|| ≤ ||M|| · ||C|| · 2||M||·||C|| + 1.

Proof Let ρ = μ ∧ η ∧ ℘(μ ∧ η) as in Eq. 14. Since μ and η are right congruences, so are
μ ∧ η and ℘(μ ∧ η) (Wonham 2016, Exercise 6.1.25). Hence ρ is a right congruence, with

|ρ| ≤ |μ| · |η| · 2|μ|·|η|

= ||M|| · ||C|| · 2||M||·||C||.
Since the languages M and C are regular, i.e. ||M||, ||C|| < ∞, we derive that |ρ| < ∞.

It then follows from Lemmas 4, 5 and Proposition 6 that the sequence {Kj } is finitely
convergent to supO(C), and supO(C) is ρ-supported on K0, i.e.

Ner(supO(C)) ≥ {supO(C),�∗ − supO(C)} ∧ ρ ∧ Ner(K0)

= {supO(C),�∗ − supO(C)} ∧ μ ∧ η ∧ ℘(μ ∧ η) ∧ Ner(K0)

= {supO(C),�∗ − supO(C)} ∧ μ ∧ ℘(μ ∧ η) ∧ Ner(K0).

Hence supO(C) is in fact (μ ∧ ℘(μ ∧ η))-supported on K0, which implies

|| supO(C)|| ≤ |μ ∧ ℘(μ ∧ η)| · ||K0|| + 1

≤ ||M|| · ||C|| · 2||M||·||C|| + 1 < ∞.
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Therefore supO(C) is itself a regular language.

Theorem 7 establishes the finite convergence of the sequence {Kj } in Eq. 10, as well
as the fact that an upper bound of || supO(C)|| is exponential in the product of ||M|| and
||C||.1

Remark 1 The limit supO(C) is reached in no more than ||M|| · ||C|| · 2||M||·||C|| + 1 steps.
To see this, let

π1 := {K1, �
∗ − K1} ∧ ρ ∧ Ner(K0).

Then |π1| = ||M||·||C||·2||M||·||C||+1 (similar to the proof of Theorem 7). Since Ner(K1) ≥
π1, it may be verified that π1 is a right congruence; hence there is an automaton represen-
tation of π1 which is a recognizer for K1 (Wonham 2016). Now let K2 = �(K1) ⊆ K1; by
transitivity of the ρ-support relation we derive

Ner(K2) ≥ {K2, �
∗ − K2} ∧ ρ ∧ Ner(K0) =: π2.

Thus π2 is a right congruence, and there is an automaton representation of π2 which is a
recognizer for K2. Moreover, the above inequality implies that π1, when restricted to K2, is
finer than Ner(K2). Hence in passing from K1 to K2, it is only necessary to remove those
π1-cells in K1 that are not in K2. Therefore |π2| ≤ |π1|. Inductively one can show that
|πj+1| ≤ |πj | for all j ≥ 1, where

πj := {Kj , �
∗ − Kj } ∧ ρ ∧ Ner(K0) (≤ Ner(Kj ))

and there is an automaton representation of πj which is a recognizer for Kj . With this, and
the fact that |π1| = ||M|| · ||C|| · 2||M||·||C|| + 1, we conclude that the sequence {|πj |}, and
therefore {Kj }, converges in at most ||M|| · ||C|| · 2||M||·||C|| + 1 steps.

In the sequel we prove Proposition 6, for which we need two lemmas.

Lemma 8 For each j ≥ 1, the Nerode equivalence relation on �∗ with respect to F(Kj−1)

satisfies
Ner(F (Kj−1)) ≥ ϕj ∧ Ner(Kj−1) ∧ ℘(Ner(Kj−1) ∧ μ ∧ η).

Proof Let s1, s2 ∈ �∗ and assume s1, s2 are equivalent mod the equivalence relation on the
right-hand-side. Since s1 ≡ s2(mod ϕj ), either s1, s2 ∈ �∗−F(Kj−1) or s1, s2 ∈ F(Kj−1).
First, let s1, s2 ∈ �∗ − F(Kj−1); then for all w ∈ �∗ it holds that s1w, s2w ∈ �∗ −
F(Kj−1). Thus s1 ≡ s2(mod Ner(F (Kj−1))).

Next, let s1, s2 ∈ F(Kj−1) and assume that

s1 ≡ s2(mod Ner(Kj−1) ∧ ℘(Ner(Kj−1) ∧ μ ∧ η)).

Also let w ∈ �∗ be such that s1w ∈ F(Kj−1). It will be shown that s2w ∈ F(Kj−1).
Note first that s2w ∈ Kj−1, since s1w ∈ F(Kj−1) ⊆ Kj−1 and s1 ≡ s2(mod Ner(Kj−1)).
Hence it is left to show that D(s2w) ∩ M ⊆ Kj−1, i.e.⋃ {[s2w ∩ C.σ ] ∩ C.σ | σ ∈ �

} ∩ M ⊆ Kj−1.

1For regular languages C,M such that C ⊆ M , one may always find finite-state automata, say C, M, such
that C is a subautomaton of M (e.g. Cho and Marcus (1989)). Then the state size of the product of C and M
is simply the state size of C. Therefore the automaton representing supO(C) has state size upper bounded
by the exponential in the state size of C.
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It follows from s2 ∈ F(Kj−1) that⋃ {[s2 ∩ C.σ ] ∩ C.σ | σ ∈ �
} ∩ M ⊆ Kj−1.

Thus let s′
2 ∈ [s2], x′ ∈ [w], and s′

2x
′ ∈ [s2w ∩ C.σ ] ∩ C.σ ∩ M for some σ ∈ �. Write

x′ := y′σ , y′ ∈ �∗. Since s1 ≡ s2(mod ℘(Ner(Kj−1) ∧ μ ∧ η)), there exists s′
1 ∈ [s1]

such that s′
1 ≡ s′

2(mod Ner(Kj−1) ∧ μ ∧ η). Hence s′
1x

′ ∈ M and s′
1y

′ ∈ C, and we derive
that s′

1x
′ = s′

1y
′σ ∈ [{s1w} ∩ C.σ ] ∩ C.σ ∩ M . It then follows from s1w ∈ F(Kj−1)

that s′
1x

′ ∈ Kj−1, which in turn implies that s′
2x

′ ∈ Kj−1. This completes the proof that
s2w ∈ F(Kj−1), as required.

Lemma 9 For Kj (j ≥ 1) generated by Eq. 10, the following statements hold:

Kj =
⋃ {[s] ∩ (

C ∩ M
) | s ∈ �∗ & [s] ∩ (

C ∩ M
) ⊆ Kj−1 ∩ F(Kj−1)

} ;
Ner(Kj ) ≥ μ ∧ η ∧ ℘(Ner(Kj−1) ∧ Ner(F (Kj−1)) ∧ μ ∧ η).

Proof By Eq. 9 we know that Kj is the supremal normal sublanguage of Kj−1 ∩ F(Kj−1)

with respect to C ∩ M . Thus the conclusions follow immediately from Exercise 6.1.25 of
Wonham (2016).

Now we are ready to prove Proposition 6.

Proof of Proposition 6. To prove that Kj is ρ-supported on Kj−1 (j ≥ 1), by definition we
must show that

Ner(Kj ) ≥ κj ∧ μ ∧ η ∧ ℘(μ ∧ η) ∧ Ner(Kj−1).

It suffices to show the following:

Ner(Kj ) ≥ κj ∧ μ ∧ η ∧ ℘(μ ∧ η).

We prove this statement by induction. First, we show the base case (j = 1)

Ner(K1) ≥ κ1 ∧ μ ∧ η ∧ ℘(μ ∧ η).

From Lemma 8 and K0 = C (thus Ner(K0) = η) we have

Ner(F (K0)) ≥ ϕ1 ∧ Ner(K0) ∧ ℘(Ner(K0) ∧ μ ∧ η)

= ϕ1 ∧ η ∧ ℘(μ ∧ η).

It then follows from Lemma 9 that

Ner(K1) ≥ μ ∧ η ∧ ℘(Ner(K0) ∧ Ner(F (K0)) ∧ μ ∧ η)

≥ μ ∧ η ∧ ℘(η ∧ ϕ1 ∧ η ∧ ℘(μ ∧ η) ∧ μ ∧ η)

= μ ∧ η ∧ ℘(ϕ1 ∧ μ ∧ η) ∧ ℘(μ ∧ η)

= μ ∧ η ∧ ℘(ϕ1 ∧ μ ∧ η). (15)

We claim that
Ner(K1) ≥ κ1 ∧ μ ∧ η ∧ ℘(μ ∧ η).

To show this, let s1, s2 ∈ �∗ and assume that s1 ≡ s2(mod κ1 ∧ μ ∧ η ∧ ℘(μ ∧ η)). If
s1, s2 ∈ �∗ − K1, then for all w ∈ �∗, s1w, s2w ∈ �∗ − K1; thus s1 ≡ s2(mod Ner(K1)).
Now let s1, s2 ∈ K1. By Lemma 9 we derive that for all s′

1 ∈ [s1] ∩ (
C ∩ M

)
and s′

2 ∈
[s2] ∩ (

C ∩ M
)
, s′

1, s
′
2 ∈ K1. Since K1 ⊆ F(K0), s′

1, s
′
2 ∈ F(K0) and hence

{Pϕ1∧μ∧η(s
′
1) | s′

1 ∈ [s1] ∩ (
C ∩ M

)} = {Pϕ1∧μ∧η(s
′
2) | s′

2 ∈ [s2] ∩ (
C ∩ M

)}.
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Namely s1 ≡ s2(mod ℘(ϕ1 ∧ μ ∧ η)). This implies that s1 ≡ s2(mod Ner(K1)) by Eq. 15.
Hence the above claim is established, and the base case is proved.

For the induction step, suppose that for j ≥ 2, there holds

Ner(Kj−1) ≥ κj−1 ∧ μ ∧ η ∧ ℘(μ ∧ η).

Again by Lemma 8 we have

Ner(F (Kj−1)) ≥ ϕj−1∧Ner(Kj−1)∧℘(Ner(Kj−1)∧μ∧η)

≥ ϕj−1∧κj−1∧μ∧η∧℘(μ∧ η)∧℘(κj−1 ∧ μ ∧ η ∧ ℘(μ ∧ η) ∧ μ ∧ η)

= ϕj−1 ∧ κj−1 ∧ μ ∧ η ∧ ℘(μ ∧ η) ∧ ℘(κj−1 ∧ μ ∧ η)

= ϕj−1 ∧ κj−1 ∧ μ ∧ η ∧ ℘(κj−1 ∧ μ ∧ η)

Then by Lemma 9,

Ner(Kj ) ≥ μ ∧ η ∧ ℘(Ner(Kj−1) ∧ Ner(F (Kj−1)) ∧ μ ∧ η)

≥ μ ∧ η ∧ ℘(ϕj−1 ∧ κj−1 ∧ μ ∧ η ∧ ℘(κj−1 ∧ μ ∧ η))

= μ ∧ η ∧ ℘(ϕj−1 ∧ κj−1 ∧ μ ∧ η). (16)

We claim that

Ner(Kj ) ≥ κj ∧ μ ∧ η ∧ ℘(μ ∧ η).

To show this, let s1, s2 ∈ �∗ and assume that s1 ≡ s2(mod κj ∧ μ ∧ η ∧ ℘(μ ∧ η)). If
s1, s2 ∈ �∗ −Kj , then for all w ∈ �∗, s1w, s2w ∈ �∗ −Kj ; hence s1 ≡ s2(mod Ner(Kj )).
Now let s1, s2 ∈ Kj . By Lemma 9 we derive that for all s′

1 ∈ [s1] ∩ (
C ∩ M

)
and s′

2 ∈
[s2] ∩ (

C ∩ M
)
, s′

1, s
′
2 ∈ Kj . Since Kj ⊆ F(Kj−1) ⊆ Kj−1,

{Pϕj−1∧κj−1∧μ∧η(s
′
1) | s′

1∈[s1]∩
(
C ∩ M

)}
= {Pϕj−1∧κj−1∧μ∧η(s

′
2) | s′

2∈[s2]∩
(
C ∩ M

)}.
Namely s1 ≡ s2(mod ℘(ϕj−1 ∧ κj−1 ∧μ∧η). This implies that s1 ≡ s2(mod Ner(Kj )) by
Eq. 16. Therefore the above claim is established, and the induction step is completed.

3.3 Effective computability of �

We conclude this section by showing that the iteration scheme in Eq. 10 yields an effective
procedure for the computation of supO(C), when the given languages M and C are regular.
For this, owing to Theorem 7, it suffices to prove that the operator � in Eq. 9 is effectively
computable.

Recall that a language L ⊆ �∗ is regular if and only if there exists a finite-state
automaton G = (Q, �, δ, q0,Qm) such that

Lm(G) = {s ∈ �∗ | δ(q0, s) ∈ Qm} = L.

Let O : (Pwr(�∗))k → (Pwr(�∗)) be an operator that preserves regularity; namely
L1, ..., Lk regular implies O(L1, ..., Lk) regular. We say that O is effectively computable
if from each k-tuple (L1, ..., Lk) of regular languages, one can construct a finite-state
automaton G with Lm(G) = O(L1, ..., Lk).
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The standard operators of language closure, complement,2 union, intersection, and cate-
nation all preserve regularity and are effectively computable (Eilenberg 1974). Moreover,
both the operator supN : Pwr(�∗) → Pwr(�∗) given by

supN (L) :=
⋃

{L′ ⊆ L | [L′] ∩ H = L′}, with respect to some fixed H ⊆ �∗

and the operator supF : Pwr(�∗) → Pwr(�∗) given by

supF(L) :=
⋃

{L′ ⊆ L | L′ = L′}
preserve regularity and are effectively computable (see Cho and Marcus (1989) and
Wonham and Ramadge (1987), respectively).

The main result of this subsection is the following theorem.

Theorem 10 Consider the operator � in Eq. 9 and let K ⊆ �∗. Then

�(K) = supN
(
K ∩ supF

(⋂
{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}

))

where supN is with respect to C ∩ M .

Theorem 10 implies that the operator � in Eq. 9 preserves regularity and is effectively
computable, inasmuch as the language operations involved – closure, complement, union,
intersection, catenation C.σ , supN , and supF – all preserve regularity and are effectively
computable. Moreover, there exist off-the-shelf algorithms for these language operations,
which allows straightforward implementation of �.

Remark 2 We have shown in Remark 1 that the sequence {Kj } in Eq. 10 converges in at
most ||M|| · ||C|| · 2||M||·||C|| + 1 steps. We have also considered that Kj is recognized by
an automaton, say Gj , that represents the following right congruence

πj = {Kj ,�
∗ − Kj } ∧ ρ ∧ Ner(K0) (≤ Ner(Kj )), where ρ = μ ∧ η ∧ ℘(μ ∧ η).

Owing to the exponential property of ρ, the state structure of Gj is already exponen-
tial in ||M|| · ||C|| and thus applying supN on Gj causes no further exponentiation.
It is then verified that by the formula given in Theorem 10, the complexity of com-
puting �(Kj ), namely the complexity of each step in generating the sequence {Kj }, is
O(|�| · ||M||5 · ||C||6 · 22||M||·||C||). In total therefore, the complexity of the language itera-
tion scheme (10) is O(|�| · ||M||6 · ||C||7 · 23||M||·||C||), which improves on the algorithm of
double-exponential complexity in Cai et al. (2015). The order estimate has the same expo-
nential term as that of the automaton-based algorithm in Alves et al. (2016), but includes
a higher-degree polynomial multiplier. Nevertheless, the advantage of our algorithm is that
it is decomposable into a set of well-known language computations and thus admits easy
implementation by off-the-shelf algorithms. We leave for future research the design of more
efficient language-based algorithms.

Remark 3 In the automaton-based algorithm in Cai et al. (2015), the operations at each
iteration are: (1) search for transitions and marker states (of the automaton representing
the language M ∩ C ∩ P(M ∩ C)) that violate the conditions of relative observability,
and (2) remove such transitions, unmark such marker states, trim the resulting automaton
and proceed to the next iteration. These operations provide little linguistic insight and were

2For a language L ⊆ �∗, its complement, written Lc , is �∗ − L.
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difficult to implement. By contrast, the computation of � at each iteration of the language-
based algorithm is decomposable into several well-known language operations (Theorem
10), which are not only distinct from those of the algorithm in (Cai et al. 2015), but are also
easily implementable by off-the-shelf algorithms.

Proof of Theorem 10. First, we claim that for each K ⊆ �∗,

F(K) = K ∩ supF
(⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}
)

.

To see this, we derive by Eqs. 8 and 6 that

F(K) = {s ∈ K |
⋃ {[s ∩ C.σ ] ∩ C.σ | σ ∈ �

} ∩ M ⊆ K}.
Hence

s ∈ F(K) ⇔ s ∈ K and
⋃ {[s ∩ C.σ ] ∩ C.σ | σ ∈ �

} ∩ M ⊆ K

⇔ s ∈ K and
⋃ {[s ∩ C.σ ] ∩ C.σ | σ ∈ �

} ⊆ K ∪ (M)c

⇔ s ∈ K and (∀σ ∈ �) [s ∩ C.σ ] ∩ C.σ ⊆ K ∪ (M)c

⇔ s ∈ K and (∀σ ∈ �) [s ∩ C.σ ] ⊆ K ∪ (M)c ∪ (C.σ )c

⇔ s ∈ K and (∀σ ∈ �) [s ∩ C.σ ] ⊆ K ∪ (M ∩ C.σ)c

⇔ s ∈ K and (∀σ ∈ �) s ∩ C.σ ⊆ supN (K ∪ (M ∩ C.σ)c)

⇔ s ∈ K and (∀σ ∈ �) s ⊆ supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c

⇔ s ∈ K and s ⊆
⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}
⇔ s ∈ K and s ∈ supF

(⋂
{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}

)

⇔ s ∈ K ∩ supF
(⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}
)

.

This proves the claim. It follows immediately from the definition of � that

�(K) = supN
(
K ∩ supF

(⋂
{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ )c | σ ∈ �}

))

as required.

4 Relative observability and controllability

For the purpose of supervisory control under partial observation, we combine relative
observability with controllability and provide a fixpoint characterization of the supremal
relatively observable and controllable sublanguage.

Let the alphabet � be partitioned into �c, the subset of controllable events, and �u, the
subset of uncontrollable events. For the given M and C, we say that C is controllable with
respect to M if

C�u ∩ M ⊆ C.

Whether or not C is controllable, write C(C) for the family of all controllable sublanguages
of C. Then the supremal element sup C(C) exists and is effectively computable (Wonham
and Ramadge 1987; Kumar et al. 1993).

Now write CO(C) for the family of controllable and C-observable sublanguages of C.
Note that the family CO(C) is nonempty inasmuch as the empty language is a member.
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Thanks to the closure under union of both controllability and C-observability, the supremal
controllable and C-observable sublanguage sup CO(C) exists and is given by

sup CO(C) :=
⋃

{K | K ∈ CO(C)}. (17)

Define the operator  : Pwr(�∗) → Pwr(�∗) by3

(K) := supO(sup C(K)). (18)

The proposition below characterizes sup CO(C) as the largest fixpoint of .

Proposition 11 sup CO(C) = (sup CO(C)), and sup CO(C) ⊇ K for every K such that
K = (K).

Proof Since sup CO(C) ∈ CO(C), i.e. both controllable and C-observable,

(sup CO(C)) = supO(sup C(supCO(C)))

= supO(sup CO(C))

= sup CO(C).

Next let K be such that K = (K). To show that K ⊆ supCO(C), it suffices to show
that K ∈ CO(C). Let H := sup C(K); thus H ⊆ K . On the other hand, from K =
(K) = supO(H) we have K ⊆ H . Hence K = H . It follows that K = sup C(K) and
K = supO(K), which means that K is both controllable and C-observable. Therefore we
conclude that K ∈ CO(C).

In view of Proposition 11, we compute sup CO(C) by iteration of  as follows:

(∀j ≥ 1) Kj = (Kj−1), K0 = C. (19)

It is readily verified that (K) ⊆ K , and thus

K0 ⊇ K1 ⊇ K2 ⊇ · · ·
Namely the sequence {Kj } (j ≥ 1) is a monotone (descending) sequence of languages.
Recalling the notation from Section 3.1, we have the following key result.

Proposition 12 Consider the sequence {Kj } generated by Eq. 19 and let ρ = μ ∧ η ∧
℘(μ ∧ η). Then for each j ≥ 1, Kj is ρ-supported on Kj−1.

Proof Write Hj := sup C(Kj−1) and ψj := {Hj , �
∗ − Hj } for j ≥ 1. Then by Wonham

and Ramadge (1987, p. 642) there holds

Ner(Hj ) ≥ ψj ∧ μ ∧ Ner(Kj−1).

We claim that for j ≥ 1,

Ner(Kj ) ≥ κj ∧ μ ∧ η ∧ ℘(μ ∧ η).

We prove this claim by induction. For the base case (j = 1),

Ner(H1) ≥ ψ1 ∧ μ ∧ Ner(K0)

= ψ1 ∧ μ ∧ η

3As defined  is the composition of an operator characterizing the set of controllable sublanguages of C and
the operator � in Eq. 9 characterizing the set of C-observable sublanguages of C.
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Since K1 = supO(H1), we adopt the following sequence to compute K1:

(∀i ≥ 1) Ti = �(Ti−1), T0 = H1.

Following the derivations in the proof of Proposition 6, it is readily shown that each Ti is
ρ-supported on H1; in particular,

Ner(K1) ≥ κ1 ∧ ρ ∧ Ner(H1)

≥ κ1 ∧ ψ1 ∧ μ ∧ η ∧ ℘(μ ∧ η)

= κ1 ∧ μ ∧ η ∧ ℘(μ ∧ η).

This confirms the base case.
For the induction step, suppose that for j ≥ 2, there holds

Ner(Kj−1) ≥ κj−1 ∧ μ ∧ η ∧ ℘(μ ∧ η).

Thus

Ner(Hj ) ≥ ψj ∧ μ ∧ Ner(Kj−1)

≥ ψj ∧ κj−1 ∧ μ ∧ η ∧ ℘(μ ∧ η)

= ψj ∧ μ ∧ η ∧ ℘(μ ∧ η).

Again adopt a sequence to compute Kj as follows:

(∀i ≥ 1) Ti = �(Ti−1), T0 = Hj .

We derive by similar calculations as in Proposition 6 that each Ti is ρ-supported on Hj ; in
particular,

Ner(Kj ) ≥ κj ∧ ρ ∧ Ner(Hj )

≥ κj ∧ ψj ∧ μ ∧ η ∧ ℘(μ ∧ η)

= κj ∧ μ ∧ η ∧ ℘(μ ∧ η).

Therefore the induction step is completed, and the above claim is established. There follows
immediately

Ner(Kj ) ≥ κj ∧ μ ∧ η ∧ ℘(μ ∧ η) ∧ Ner(Kj−1)

= κj ∧ ρ ∧ Ner(Kj−1).

Namely, Kj is ρ-supported on Kj−1, as required.

The following theorem, the main result of this section, follows directly from Proposition
12 and Lemma 5.

Theorem 13 Consider the sequence {Kj } in Eq. 19, and suppose that the given languages
M and C are regular. Then the sequence {Kj } is finitely convergent to sup CO(C), and
sup CO(C) is a regular language with

|| sup CO(C)|| ≤ ||M|| · ||C|| · 2||M||·||C|| + 1.

We conclude that sup CO(C) is effectively computable, inasmuch as the operators
sup C(·) and supO(·) are (see Wonham and Ramadge (1987) and Theorem 10, respec-
tively). In particular, the operator  in Eq. 18 is effectively computable. Finally, the limit
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sup CO(C) is reached in no more than ||M|| · ||C|| · 2||M||·||C|| + 1 steps, and the com-
plexity of this iteration scheme (19) is O(|�| · ||M||7 · ||C||7 · 23||M||·||C||) (cf. Remarks 1
and 2).

5 Conclusions

We have presented a new characterization of relative observability, and an operator on lan-
guages whose largest fixpoint is the supremal relatively observable sublanguage. In the case
of regular languages and based on the support relation, we have proved that the sequence
of languages generated by the operator converges finitely (albeit with exponential com-
plexity) to the supremal relatively observable sublanguage, and the operator is effectively
computable. Moreover, for the purpose of supervisory control under partial observation, we
have presented a second operator that in the regular case effectively computes the supremal
relatively observable and controllable sublanguage.

Both operators have been implemented and tested on a number of examples. We have
confirmed that the computational results agree with those by the algorithm in Cai et al.
(2015). Thus the new operators provide a useful alternative to ensure presumed correctness
based on consistency.
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