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A B S T R A C T

In this paper we present an online supervisory control approach, based on limited lookahead policy, that is
amenable for the control of multi-agent discrete-event systems. We then apply this online control scheme to
model and control a warehouse automation system served by multiple mobile robots; the effectiveness of this
scheme is demonstrated through a case study. Moreover, we build an experiment testbed for testing the validity
of our proposed method with implementation on real robots.

1. Introduction

Supervisory control theory of discrete-event systems (DES) was first
proposed by Ramadge and Wonham in the 1980s (Ramadge & Won-
ham, 1987), with the aim to formalizing general (high-level) control
principles for a wide range of application domains. In this theory, DES
are modeled as finite-state automata, and their behaviors represented
by regular languages. The control feature is that certain events (or
state transitions) can be disabled by an external supervisor to enforce
a desired behavior. This feature leads to the fundamental concept of
language controllability, which determines the existence of a supervisor
that suitably disables a series of events in order to satisfy an imposed
control specification. For a comprehensive account of supervisory con-
trol theory, the reader is referred to Wonham and Cai (2018); also see
Wonham, Cai, and Rudie (2018) for a recent historical overview of the
theory.

While supervisory control of DES is theoretically sound, it is often
computationally infeasible for practical systems that are large and
complex, due to the notorious problem of state explosion (Gohari &
Wonham, 2000). Indeed, the computational complexity of synthesizing
a supervisor is exponential in the number of plant components. In
addition, systems that are time-varying or subject to unknown changes
are also unsuitable to be dealt with by supervisory control theory,
because a supervisor is synthesized offline and consequently cannot
account for changes in operation.

To address large and time-varying DES, online supervisory control
based on limited lookahead policy was proposed in Chung, Lafortune,
and Lin (1992, 1993, 1994). This control scheme generates at the
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current state a limited-step-ahead projection of the plant’s behavior, and
determines based on the projected behavior the next control action to
satisfy an imposed specification. A new projection is generated after
each occurrence of event, so time-varying changes in the system can be
taken into account in this scheme. In particular, Chung et al. (1993,
1994) presented recursive strategies to make the online supervisory
synthesis more efficient. Other extensions of the online supervisory
control can be found in Boroomand and Hashtrudi-Zad (2013), Hadj-
Alouane, Lafortune, and Lin (1996), Kumar, Cheung, and Marcus (1998)
and Winacott and Rudie (2009). In Hadj-Alouane et al. (1996), online
supervisory control of partially observed DES was addressed where some
occurrences of events are unobservable. In Kumar et al. (1998), a variant
method was reported for generating a limited-step-ahead projection of
the plant’s behavior. In Winacott and Rudie (2009), online control of
probabilistic DES was investigated where event occurrences are random
accordingly to given probabilities. Finally in Boroomand and Hashtrudi-
Zad (2013), online control was extended to deal with robust supervisory
control where the plant model is uncertain. Common in all the online
supervisory control methods above (Boroomand & Hashtrudi-Zad, 2013;
Chung et al., 1992, 1993, 1994; Hadj-Alouane et al., 1996; Kumar et al.,
1998; Winacott & Rudie, 2009), the plant model is assumed to be given
or already computed.

This paper adapts the online supervisory control approach to the
case of multi-agent DES, i.e. plant consisting of multiple components,
and applies the approach to warehouse automation systems served
by multiple mobile robots. In recent years warehouse automation has
received significant interest from both academia and industries, due to
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its central role in the rapidly growing e-commerce, supply chain, and
material handling enterprise. A landmark of such examples is Kiva sys-
tems (Wurman, D’Andrea, & Mountz, 2008), which dispatches hundreds
of robots to serve the logistics in Amazon’s distribution centers.

The contributions of this paper are threefold. First, we present a key
modification to the existing online supervisory control approach such
that the approach is amenable to multi-agent DES. The approach in
Boroomand and Hashtrudi-Zad (2013), Chung et al. (1992, 1993, 1994) ,
Hadj-Alouane et al. (1996), Kumar et al. (1998) and Winacott and Rudie
(2009) is not suitable for multi-agent DES because it assumes that the
plant model is already given or can be computed, and then generates a
limited-step-ahead projection of the plant model. For multi-agent DES,
however, the plant model is the synchronous product of the component
agents, which itself may not be feasibly computable particularly when
the number of agents is large. To circumvent this problem, we propose
to first generate limited-step-ahead projections of each agent model, and
then compute the synchronous product of the projected agent models.
This is computationally more efficient than the existing approaches in
Boroomand and Hashtrudi-Zad (2013), Chung et al. (1992, 1993, 1994),
Hadj-Alouane et al. (1996), Kumar et al. (1998) and Winacott and
Rudie (2009). Second, we show how a warehouse automation system
served by multiple robots can be modeled as a multi-agent DES, and
demonstrate through a case study the effectiveness of applying the
adapted online supervisory control approach to control the automa-
tion system. Finally, we build a testbed, consisting of multiple LEGO
MINDSTORMS EV3 robots (https://www.lego.com/en-us/mindstorms/
products/mindstorms-ev3-31313), that serves to experimentally test the
validity of our proposed online supervisory control approach for multi-
agent DES.

We note that Goryca and Hill (2013), Hill and Lafortune (2016,
2017), Lopes, Trenkwalder, Leal, Dodd, and Groß(2016), Su (2013),
Su and Lennartson (2017), Su and Lin (2013) and Ware and Su (2016)
also studied supervisory control for multi-agent DES. In Ware and Su
(2016), the authors presented a method that assigns distinct priorities
to all agents and then incrementally synthesizes supervisors for solving
a scheduling problem. This method is efficient, but need not find a
supervisor for scheduling even when a schedule exists. In Lopes et al.
(2016), the authors applied supervisory control methods to achieving
various cooperative behaviors of swarm robots (including segregation,
aggregation, object clustering, and formations), and demonstrated their
results on real multi-robot systems. In Goryca and Hill (2013) and Hill
and Lafortune (2016, 2017), the authors proposed an abstraction-based
method to efficiently synthesize supervisors for multi-agent DES, and
implemented the method into a software whose efficiency was tested
through a multi-robot planning case study. Finally in Su (2013), Su
and Lennartson (2017) and Su and Lin (2013), the authors proposed
a scalable control design for a type of multi-agent DES, where an
‘‘agent’’ was not just a plant component, but indeed a plant of its own
including an imposed specification. The ‘‘agents’’ were instantiated from
a template; for the template, under certain conditions, an algorithm
was proposed to design a supervisor whose instantiation was shown to
work for each ‘‘agent’’. In all the references above, the proposed control
synthesis methods are offline; although these methods addressed in one
way or another the issue of computational efficiency, they cannot handle
multi-agent DES that are time-varying and subject to unknown changes.
By contrast, our proposed method for multi-agent DES is online, and
therefore not only reduces computational effort, but also deals with
dynamic changes in the system.

The rest of this paper is organized as follows. In Section 2 we
introduce the adapted online supervisory control of multi-agent DES.
In Section 3 we model a warehouse automation system by multi-agent
DES, and apply online supervisory control for its control. Moreover,
we present a testbed for experimental validation of online supervisory
control for warehouse automation. Finally in Section 4 we state our
conclusions.

2. Online supervisory control of multi-agent DES

In standard supervisory control (Ramadge & Wonham, 1987; Won-
ham and Cai, 2018), the plant to be controlled is modeled by a finite
state automaton

𝐆 ∶= (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚)

where 𝑄 is the finite state set, 𝑞0 ∈ 𝑄 the initial state, 𝑄𝑚 ⊆ 𝑄 the set of
marker states, 𝛴 the finite event set, and 𝛿 ∶ 𝑄×𝛴 → 𝑄 the (partial) state
transition function. Letting 𝛴∗ denote the set of all finite-length strings
of events in 𝛴, we extend 𝛿 such that 𝛿 ∶ 𝑄 × 𝛴∗ → 𝑄 and write 𝛿(𝑞, 𝑠)!
to mean that 𝛿(𝑞, 𝑠) is defined.

The closed behavior of G is the set of all strings that can be generated
by G:

𝐿(𝐆) ∶= {𝑠 ∈ 𝛴∗
|𝛿(𝑞0, 𝑠)!}.

On the other hand, the marked behavior of G is the subset of strings that
can reach a marker state:

𝐿𝑚(𝐆) ∶= {𝑠 ∈ 𝐿(𝐆)|𝛿(𝑞0, 𝑠) ∈ 𝑄𝑚} ⊆ 𝐿(𝐆).

G is nonblocking if 𝐿(𝐆) = 𝐿𝑚(𝐆) ( ⋅ means prefix closure), namely every
string in the closed behavior may be completed to a string in the marked
behavior.

The event set 𝛴 of G is partitioned into a subset 𝛴𝑐 of controllable
events and a subset 𝛴𝑢 of uncontrollable events. A language 𝐸 ⊆ 𝛴∗ is
said to be controllable (with respect to G) if 𝐸𝛴𝑢 ∩ 𝐿(𝐆) ⊆ 𝐸, i.e.

(∀𝑠 ∈ 𝛴∗,∀𝜎 ∈ 𝛴)𝑠 ∈ 𝐸, 𝜎 ∈ 𝛴𝑢, 𝑠𝜎 ∈ 𝐿(𝐆) ⇒ 𝑠𝜎 ∈ 𝐸.

Let 𝐾 ⊆ 𝐿𝑚(𝐆) be a specification language imposed on the plant G.
Denote by (𝐾) the family of controllable sublanguages of 𝐾, i.e.

(𝐾) ∶= {𝐾 ′ ⊆ 𝐾 ∣ 𝐾 ′𝛴𝑢 ∩ 𝐿(𝐆) ⊆ 𝐾 ′}.

Then the supremal controllable sublanguage of 𝐾 exists and is given by
sup(𝐾) = ∪{𝐾 ′ ∣ 𝐾 ′ ∈ (𝐾)}. Let SUP be a (nonblocking) automaton
such that 𝐿𝑚(𝐒𝐔𝐏) = sup(𝐾). We call SUP the supervisor for plant
G that enforces sup(𝐾) ⊆ 𝐿𝑚(𝐆). The control action of SUP after an
arbitrary string 𝑠 ∈ 𝐿(𝐆) is to enable the events in

𝛾 ∶= {𝜎 ∈ 𝛴𝑢 ∣ 𝑠𝜎 ∈ 𝐿(𝐆)} ∪ {𝜎 ∈ 𝛴𝑐 ∣ 𝑠𝜎 ∈ 𝐿(𝐒𝐔𝐏)}.

To introduce online supervisory control based on limited looka-
head policy, we need an operation that ‘truncate’ an automaton from
a specified state to limited step ahead. Given an automaton 𝐆 =
(𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚), a state 𝑞 ∈ 𝑄, and the step number 𝑁 ≥ 1, the
‘truncation’ operation 𝑓𝑁 (𝐆, 𝑞) on G at state 𝑞 defines a new automaton

𝑓𝑁 (𝐆, 𝑞) = 𝐆𝑁 (𝑞) ∶= (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞𝑁0 , 𝑄𝑁
𝑚 )

where

𝑄𝑁 = {𝑞′ ∈ 𝑄 ∣ (∃𝑠 ∈ 𝛴∗)𝑞′ = 𝛿(𝑞, 𝑠) & |𝑠| ≤ 𝑁}

𝛴𝑁 = {𝜎 ∈ 𝛴 ∣ (∃𝑞′ ∈ 𝑄𝑁 )𝛿(𝑞′, 𝜎)! & 𝛿(𝑞′, 𝜎) ∈ 𝑄𝑁}

𝛿𝑁 = {(𝑞1, 𝜎, 𝑞2) ∣ 𝑞1, 𝑞2 ∈ 𝑄𝑁 & 𝜎 ∈ 𝛴𝑁 & 𝛿(𝑞1, 𝜎) = 𝑞2}

𝑞𝑁0 = 𝑞

𝑄𝑁
𝑚 = 𝑄𝑚 ∩𝑄𝑁 .

In the above definition of 𝑄𝑁 , |𝑠| denotes the length of string 𝑠. Note
also that the marker state set 𝑄𝑁

𝑚 may be empty.
In a multi-agent DES, the plant consists of 𝑛(> 1) component agents,

where each agent 𝑘(∈ {1,… , 𝑛}) is modeled by a finite state automaton
𝐆𝑘 = (𝑄𝑘, 𝛴𝑘, 𝛿𝑘, 𝑞𝑘,0, 𝑄𝑘,𝑚). The plant model 𝐆 is the synchronous
product (Wonham and Cai, 2018) of the 𝑛 component agents, written
𝐆 = (𝑄,𝛴, 𝛿, 𝑞0, 𝑄𝑚) = 𝐆1‖⋯ ‖𝐆𝑛. The event set 𝛴𝑘 of each agent 𝐆𝑘
is partitioned into a controllable subset and an uncontrollable subset,
i.e. 𝛴𝑘 = 𝛴𝑘,𝑐 ∪𝛴𝑘,𝑢; hence 𝛴𝑐 = ∪𝑘∈{1,…,𝑛}𝛴𝑘,𝑐 , 𝛴𝑢 = ∪𝑘∈{1,…,𝑛}𝛴𝑘,𝑢, and
𝛴 = ∪𝑘∈{1,…,𝑛}𝛴𝑘.
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When the number 𝑛 of component agents is large, their synchronous
product, namely the computation of the overall plant model G, is
computationally expensive, if not impossible. As a consequence, the
online supervisory control in Chung et al. (1992, 1993, 1994) that
assumes G is available is not directly suitable for multi-agent DES.
By contrast, we propose the following modified and more efficient
online supervisory control, which first truncates each agent’s automaton
into limited step ahead and then form the synchronous product of the
truncated automata.

Multi-agent online supervisory control procedure:
Let 𝑠 ∈ 𝐿(𝐆) and plant G is at state 𝑞 ∶= 𝛿(𝑞0, 𝑠). Since G is the

synchronous product of 𝐆1,… ,𝐆𝑛, state 𝑞 is the 𝑛-tuple 𝑞 = (𝑞1,… , 𝑞𝑛),
where 𝑞𝑘 is the current state of component 𝐆𝑘 (𝑘 ∈ {1,… , 𝑛}). Let 𝑁(≥ 1)
be the size of the lookahead window.

(1) For each component agent 𝐆𝑘 (𝑘 ∈ {1,… , 𝑛}), generate the 𝑁-
step-ahead behavior from the current state 𝑞𝑘 by applying the
truncation operation

𝐆𝑁
𝑘 (𝑞𝑘) = 𝑓𝑁 (𝐆𝑘, 𝑞𝑘).

(2) Compute the plant model 𝐆𝑁 (𝑞) as the synchronous product of
all truncated component models 𝐆𝑁

𝑘 (𝑞𝑘):

𝐆𝑁 (𝑞) = 𝐆𝑁
1 (𝑞1)‖⋯ ‖𝐆𝑁

𝑛 (𝑞𝑛).

(3) The states that are exactly 𝑁-step-ahead from 𝑞 in 𝐆𝑁 (𝑞) are
called pending states. A pending state may transition to an unde-
sirable state by an uncontrollable event, or it may not be able
to reach a marker state. There are two opposite attitudes as to
how to deal with pending states, for which we follow Chung et
al. (1992).

(a) Conservative attitude: all pending states are deemed unde-
sirable state and are removed, i.e.

𝐆(𝑞) = 𝑓𝑁−1(𝐆𝑁 (𝑞), 𝑞) = (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞, 𝑄𝑁
𝑚 ).

(b) Optimistic attitude: all pending states are deemed desir-
able states and are treated as marker states, i.e.

𝐆′(𝑞) = 𝑓𝑁 (𝐆𝑁 (𝑞), 𝑞) = (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞, 𝑄
′𝑁
𝑚 );

𝐆(𝑞) = (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞, 𝑄𝑁
𝑚 )

where

𝑄𝑁
𝑚 ∶= 𝑄

′𝑁
𝑚 ∪ {𝑞′ ∈ 𝑄𝑁 ∣ (∃𝑠 ∈ 𝛴∗)𝑞′ = 𝛿𝑁 (𝑞, 𝑠) & |𝑠| = 𝑁}.

(4) Let 𝐾 ⊆ 𝐿𝑚(𝐆) be a specification, and 𝐊 = (𝑃 ,𝛴, 𝜋, 𝑝0, 𝑃𝑚)
be an automaton such that 𝐿𝑚(𝐊) = 𝐾. Since 𝑠 ∈ 𝐿𝑚(𝐆)
has occurred in G, the current state of K is 𝑝 ∶= 𝜋(𝑝0, 𝑠). The
truncated specification for 𝐆(𝑞) is determined again according to
two opposite attitudes.

(a) Conservative attitude:

𝐊(𝑝) = 𝑓𝑁−1(𝐊𝑁 (𝑝), 𝑝) = (𝑃𝑁 , 𝛴𝑁 , 𝜋𝑁 , 𝑝, 𝑃𝑁
𝑚 ).

(b) Optimistic attitude:

𝐊′(𝑝) = 𝑓𝑁 (𝐊𝑁 (𝑝), 𝑝) = (𝑃𝑁 , 𝛴𝑁 , 𝜋𝑁 , 𝑝, 𝑃
′𝑁
𝑚 );

𝐊(𝑝) = (𝑃𝑁 , 𝛴𝑁 , 𝜋𝑁 , 𝑝, 𝑃𝑁
𝑚 )

where

𝑃𝑁
𝑚 ∶= 𝑃

′𝑁
𝑚 ∪ {𝑝′ ∈ 𝑃𝑁 ∣ (∃𝑠 ∈ 𝛴∗)𝑝′ = 𝜋𝑁 (𝑝, 𝑠) & |𝑠| = 𝑁}.

(5) Compute the supremal controllable sublanguage sup(𝐿𝑚(𝐊(𝑝)))
with respect to 𝐆(𝑞), and let 𝐒𝐔𝐏(𝑞) = (𝑋𝑁 , 𝛴𝑁 , 𝜉𝑁 , 𝑞, 𝑋𝑁

𝑚 ) be
the supervisor for 𝐆(𝑞) that enforces sup(𝐿𝑚(𝐊(𝑝))), i.e. 𝐿𝑚(𝐒𝐔𝐏
(𝑞)) = sup(𝐿𝑚(𝐊(𝑝))). The control action of 𝐒𝐔𝐏(𝑞) at state 𝑞 is
to enable the events in

𝛾(𝑞) ∶= {𝜎 ∈ 𝛴𝑐 ∣ 𝜉𝑁 (𝑞, 𝜎) ∈ 𝐿(𝐒𝐔𝐏(𝑞))}
∪ {𝜎 ∈ 𝛴𝑢 ∣ 𝛿𝑁 (𝑞, 𝜎) ∈ 𝐿(𝐆(𝑞))}.

One event 𝜎 ∈ 𝛾(𝑞) will be executed such that the plant 𝐆
transitions to the next state 𝛿(𝑞, 𝜎). Correspondingly, component
agents 𝐆𝑘 will transition to the next state 𝛿𝑘(𝑞𝑘, 𝜎) (provided
𝛿𝑘(𝑞𝑘, 𝜎)!). The above procedure repeats with string 𝑠𝜎.

The above online supervisory control scheme is the original one
in Chung et al. (1992) tailored specifically to multi-agent DES. In
particular, this scheme first generates a truncated automaton of each
component agent and then form the plant model by synchronous
product of the truncated automata; this is more efficient than computing
the plant model as synchronous product of the non-truncated automata
of the component agents. In addition, the implementation of the above
online supervisory control scheme may be made more efficient by
adopting the recursive computation or variable limited lookahead steps
as in Chung et al. (1993, 1994). On the other hand, this online scheme
has the same weakness as Chung et al. (1992): nonblocking controlled
behavior need not be ensured, and to ensure nonblocking sufficiently
long lookahead step may be required (see also Boroomand & Hashtrudi-
Zad, 2013). This is an important issue that we aim to address in our
immediate future work, by adapting the results in Boroomand and
Hashtrudi-Zad (2013), Chung et al. (1992) to our setup.

Remark 1. We analyze the computational complexity of the proposed
multi-agent online supervisory control procedure. Let 𝑛(𝑞) denote the
state number of 𝐆(𝑞) computed in Step 3), and 𝑚(𝑝) the state number
of 𝐊(𝑝) in Step 4). Then according to Ramadge and Wonham (1987),
the computation of 𝐒𝐔𝐏(𝑞) in Step 5) has complexity 𝑂(𝑛(𝑞) ⋅ 𝑚(𝑝)). In
typical cases, the specification 𝐊(𝑝) can be chosen as a subautomaton
of 𝐆(𝑞) (i.e. 𝑚(𝑝) ≤ 𝑛(𝑞)), and hence the complexity of Step 5) is simply
𝑂(𝑛(𝑞)2). To generate 𝐆(𝑞) in Step 3), however, we need to first compute
𝐆𝑁 (𝑞) in Step 2). Let 𝑙(𝑞) be the maximum state number of 𝐆𝑁

𝑖 (𝑞𝑖),
𝑖 = 1,… , 𝑛. Then the computation of 𝐆𝑁 (𝑞) has complexity 𝑂(𝑙(𝑞)𝑛)
(Gohari & Wonham, 2000). Therefore, the overall complexity of the
multi-agent online supervisory control procedure is 𝑂(max𝑞𝑙(𝑞)2𝑛).

The only difference in the original online supervisory control algo-
rithm in Chung et al. (1992) is that of computing 𝐆𝑁 (𝑞). Specifically,
𝐆𝑁 (𝑞) in Chung et al. (1992) was computed as the 𝑁-step-ahead
truncation of 𝐆 = 𝐆1‖⋯ ‖𝐆𝑛, i.e. 𝐆𝑁 (𝑞) ∶= 𝑓𝑁 (𝐆, 𝑞). Let 𝑘 be the
maximum state number of 𝐆𝑖, 𝑖 = 1,… , 𝑛. Then the computation of
𝐆, and thus of 𝐆𝑁 (𝑞), has complexity 𝑂(𝑘𝑛) (Gohari & Wonham, 2000).
Overall, the complexity of the online supervisory control algorithm in
Chung et al. (1992) (indeed in all Boroomand & Hashtrudi-Zad, 2013;
Chung et al., 1992, 1993, 1994; Hadj-Alouane et al., 1996; Kumar et al.,
1998; Winacott & Rudie, 2009) is 𝑂(𝑘2𝑛).

In comparison, although the original online algorithm and our
proposed one both have complexity exponential in the number of agents,
since typically max𝑞𝑙(𝑞) ≪ 𝑘 our proposed algorithm effectively reduces
computational effort.

3. Warehouse automation application

In today’s unprecedentedly growing e-commerce, supply chain, and
material handling industries, warehouse automation is key to achieving
significant efficiency in logistics. A landmark example is Amazon’s Kiva
systems (Wurman et al., 2008). In this section we show how to apply
the multi-agent online supervisory control scheme to model and control
a warehouse served by multiple mobile robots.

3.1. Warehouse configuration

Different warehouses have different configurations. To make our
presentation concrete, we adopt the grid-type layout as displayed in
Fig. 1. Mobile robots are assumed to be waiting for tasks at the top
area, items to be picked up stored in the black-rectangle areas, and
item-delivery destination (where a human worker is operating) at the
bottom.
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Fig. 1. Warehouse configuration: items to be picked up are stored in black-
rectangle areas.

Fig. 2. Deadlock (or blocking): neither robots can move forward and no robot
can finish its delivery.

When a robot is assigned a task, it is given 3 locations:
(i) start location: a location just below the top waiting area;
(ii) item location: a location in one of the black-rectangle areas;
(iii) goal location: a location just above the bottom item-delivery

destination.
Upon being assigned a task, a robot should make its way first to the item
location, picking up the item, and then to the goal location.

During navigation in the warehouse, a robot must avoid all item-
storage (black-rectangle) areas at all times, only except when it needs to
enter such an area to pick up its assigned item. We assume for simplicity
that a robot enters an item-storage area only from above (i.e. a robot
only moves downward to enter a black-rectangle area). It is also assumed
that a robot can move forward, turn left, turn right, but never move
backward.

Despite that the configuration described above is to some degree ad
hoc, we can study several general control issues when the warehouse
is served concurrently by multiple robots for its item-pickup/delivery
logistics. These issues are:

(i) safety: robots must not collide with one another;
(ii) deadlock-free: robots must not block each other (in aisles be-

tween item-storage areas as shown in Fig. 2) such that no one can
accomplish its delivery;

(iii) efficiency: the total time of finishing item delivery of all robots
should be as short as possible.

In the sequel we shall apply the multi-agent online supervisory
control scheme to address the above issues. Specifically, the safety
requirement will be imposed explicitly as a mutual exclusion specification
that prohibits using the same location by more than one robot at any
time. Deadlock-free will be enforced by requiring that the synthesized
controlled behavior be nonblocking. Finally efficiency, while difficult
to be dealt with by the untimed supervisory control, will be reflected in
modeling the individual robots.

Fig. 3. Warehouse grid assigned with numbers.

Fig. 4. Example: start, item, and goal locations assigned to a particular robot.

Fig. 5. Automaton model of the robot in Fig. 4.

Table 1
Event numbers of each robot 𝑘 ∈ {1,… , 𝑛}.

go north 𝑘 × 10 + 1
go east 𝑘 × 10 + 3
go south 𝑘 × 10 + 5
go west 𝑘 × 10 + 7

3.2. Automata models of robots

Consider there are 𝑛(> 1) robots serving the warehouse. To propose a
model for each robot, we consider a further concretized layout displayed
in Fig. 3. Assign natural numbers to each cell of the grid; these will be
used as state numbers. The waiting area for robots at the top is assigned
‘‘0’’, which is the initial state for all robots. On the other hand, the item
delivery destination at the bottom, assigned in this case ‘‘71’’, is the only
marker state for each robot.

In the grid a robot may move north, south, west, or east. For robot
𝑘(∈ {1,… , 𝑛}), designate the events with numbers as shown in Table 1.
As is reasonable for this application, all events are assumed to be
controllable.

When a task is assigned to robot 𝑘 (i.e. a start location 𝑞𝑘,𝑠𝑡𝑎𝑟𝑡, an
item location 𝑞𝑘,𝑖𝑡𝑒𝑚, and a goal location 𝑞𝑘,𝑔𝑜𝑎𝑙 are given), calculate the
following shortest paths (those with the least number of events):
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(i) find all shortest paths between 𝑞𝑘,𝑠𝑡𝑎𝑟𝑡 and the location just above
𝑞𝑘,𝑖𝑡𝑒𝑚 (say 𝑞↑𝑘,𝑖𝑡𝑒𝑚);

(ii) find all shortest paths between the location just below 𝑞𝑘,𝑖𝑡𝑒𝑚 (say
𝑞↓𝑘,𝑖𝑡𝑒𝑚) and 𝑞𝑘,𝑔𝑜𝑎𝑙.
These shortest paths reflect the efficiency issue mentioned in the pre-
ceding subsection.1 As an example, in Fig. 4 a robot is assigned a start
location ‘‘7’’, item location ‘‘32’’, and goal location ‘‘70’’. As shown in
Fig. 5, first find all shortest paths from ‘‘7’’ (start) to ‘‘22’’ (location
just above item), and then from ‘‘42’’ (location just below item) to ‘‘70’’
(goal).

Let 𝑄𝑘,𝑠𝑝 denote all the states included in the calculated shortest
paths. Then the total state set 𝑄𝑘 of robot 𝑘 is

𝑄𝑘 ∶= 𝑄𝑘,𝑠𝑝 ∪ {0, 71, 𝑞𝑘,𝑖𝑡𝑒𝑚}. (1)

Moreover, let 𝛿𝑘,𝑠𝑝 denote all the transitions included in the shortest
paths; then the total transition function of robot 𝑘 is given by

𝛿𝑘 ∶= 𝛿𝑘,𝑠𝑝 ∪ {[0, 𝑘5, 𝑞𝑘,𝑠𝑡𝑎𝑟𝑡], [𝑞
↑
𝑘,𝑖𝑡𝑒𝑚, 𝑘5, 𝑞𝑘,𝑖𝑡𝑒𝑚],

[𝑞𝑘,𝑖𝑡𝑒𝑚, 𝑘5, 𝑞
↓
𝑘,𝑖𝑡𝑒𝑚], [𝑞𝑘,𝑔𝑜𝑎𝑙 , 𝑘5, 71]}. (2)

In summary, the automaton model of an arbitrary robot 𝑘(∈ {1,… ,
𝑛}) is

𝐆𝑘 = (𝑄𝑘, 𝛴𝑘, 𝛿𝑘, 𝑞𝑘,0, 𝑄𝑘,𝑚) (3)

where 𝛴𝑘 = {𝑘1, 𝑘3, 𝑘5, 𝑘7}(= 𝛴𝑘,𝑐 ), 𝑞𝑘,0 = 0, 𝑄𝑘,𝑚 = {71}, 𝑄𝑘 and 𝛿𝑘 are
as in (1) and (2). As so defined 𝐆𝑘 is nonblocking, and it is worth noting
that while 𝛴𝑘, 𝑞𝑘,0, 𝑄𝑘,𝑚 are fixed, 𝑄𝑘 and 𝛿𝑘 depend on the given start,
item, and goal locations.

3.3. Online supervisory control

We now follow the procedure introduced in Section 2 to synthesize
online supervisory control for the multi-robot warehouse automation
system. Since each robot’s automaton 𝐆𝑘 (as in (3)) has initial state 𝑞𝑘,0,
the plant G’s initial state is 𝑞0 = (𝑞1,0,… , 𝑞𝑛,0). Let string 𝑠 has occurred
in G and the current state of G is

𝑞 = (𝑞1,… , 𝑞𝑛) ∶= (𝛿1(𝑞1,0, 𝑠1),… , 𝛿𝑛(𝑞𝑛,0, 𝑠𝑛))

where 𝑠𝑘 = 𝑃𝑘(𝑠) and 𝑃𝑘 ∶ 𝛴∗ → 𝛴∗
𝑘 is the natural projection (Wonham

and Cai, 2018). Let 𝑁(≥ 1) be the size of the lookahead window.

(1) For each robot 𝐆𝑘 (𝑘 ∈ {1,… , 𝑛}), generate the 𝑁-step-ahead
behavior from the current state 𝑞𝑘 by applying the truncation
operation

𝐆𝑁
𝑘 (𝑞𝑘) = 𝑓𝑁 (𝐆𝑘, 𝑞𝑘).

Note that since 𝑄𝑘,𝑚 = {71} for all 𝑘 ∈ {1,… , 𝑛}, 𝐆𝑁
𝑘 (𝑞𝑘) does not

have a marker state unless state 71 is within the 𝑁-step ahead
window.

(2) Compute the plant model 𝐆𝑁 (𝑞) as the synchronous product of
all truncated component models 𝐆𝑁

𝑘 (𝑞𝑘):

𝐆𝑁 (𝑞) = 𝐆𝑁
1 (𝑞1)‖⋯ ‖𝐆𝑁

𝑛 (𝑞𝑛).

Note that 𝐆𝑁 (𝑞) does not have a marker state unless state 71 is
within the 𝑁-step ahead window of all robots.

(3) Since the plant model 𝐆𝑁 (𝑞) generally does not have a marker
state, we adopt for this application the optimistic attitude to
make the pending states the marker states:

𝐆′(𝑞) = 𝑓𝑁 (𝐆𝑁 (𝑞), 𝑞) = (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞, 𝑄
′𝑁
𝑚 );

𝐆(𝑞) = (𝑄𝑁 , 𝛴𝑁 , 𝛿𝑁 , 𝑞, 𝑄𝑁
𝑚 )

1 We shall consider in future work a more systematic formulation of the
efficiency criterion, by first casting the problem into the timed DES framework
(Brandin & Wonham, 1994) and then adapt the optimal supervisory control
method (Sengupta & Lafortune, 1998) to minimize a cost function of the total
time spent.

Fig. 6. Start, item, and goal locations assigned to each of the three robots.

where

𝑄𝑁
𝑚 ∶= 𝑄

′𝑁
𝑚 ∪ {𝑞′ ∈ 𝑄𝑁 ∣ (∃𝑠 ∈ 𝛴∗)𝑞′ = 𝛿𝑁 (𝑞, 𝑠)& |𝑠| = 𝑁}.

(4) For control specification, we impose the safety requirement,
i.e. no collisions among the robots during their navigation.
Preventing collisions is equivalent to ensuring mutual exclusion
of occupying the same cell in the grid by more than one robot.
So we model this specification by an automaton 𝐊(𝑞) obtained
from 𝐆(𝑞) by removing those states, and associated transitions,
where two or more robots are in the same cell. Implicitly the
optimistic attitude is taken for the specification. Moreover, we
mark all states of 𝐊(𝑞).

(5) Compute the supremal controllable sublanguage sup(𝐿𝑚(𝐊(𝑞)))
with respect to 𝐆(𝑞), and let 𝐒𝐔𝐏(𝑞) = (𝑋𝑁 , 𝛴𝑁 , 𝜉𝑁 , 𝑞, 𝑋𝑁

𝑚 ) be
the supervisor for 𝐆(𝑞) that enforces sup(𝐿𝑚(𝐊(𝑞))), i.e. 𝐿𝑚(𝐒𝐔𝐏
(𝑞)) = sup(𝐿𝑚(𝐊(𝑞))). The control action of 𝐒𝐔𝐏(𝑞) at state 𝑞 is
to enable the events in

𝛾(𝑞) ∶= {𝜎 ∈ 𝛴𝑐 ∣ 𝜉𝑁 (𝑞, 𝜎) ∈ 𝐿(𝐒𝐔𝐏(𝑞))}.

One event 𝜎 ∈ 𝛾(𝑞) will be executed. Since the robots have
distinct event sets, 𝜎 belongs to one of the robot, say 𝐆𝑘. So the
current state 𝑞 = (𝑞1,… , 𝑞𝑘,… , 𝑞𝑛) will transition to the next state

𝑞′ = (𝑞1,… , 𝛿𝑘(𝑞𝑘, 𝜎),… , 𝑞𝑛).

Namely only robot 𝐆𝑘 takes an action 𝜎, and other robots
stay put. The above procedure repeats with the new state 𝑞′

(corresponding to the string 𝑠𝜎).

3.4. Case study of three robots

We demonstrate our online supervisory control scheme for ware-
house automation on a concrete example of three robots with 3-step
lookahead window. The start, item, and goal locations of each robot
are displayed in Fig. 6. According to these locations, compute as in
Section 3.2 the shortest paths; see Fig. 7. Observe that these paths are
subject to multiple possibilities of collision and deadlock, which must be
prevented by means of supervisory control. First, create automata 𝐆1,
𝐆2, and 𝐆3 for the three robots (as in (3)). These automata have state
sizes 34, 25, and 25 respectively.

Consider the situation that all three robots are at their start locations.
At this time, the current states of the robots are 7, 4, and 1. First, create
a 3-step truncated automaton at the current state for each robot: 𝐆3

1(7),
𝐆3

2(4), and 𝐆3
3(1), as displayed in Fig. 8. These automata have state sizes

101



Y. Tatsumoto et al. Control Engineering Practice 81 (2018) 97–104

Fig. 7. Automaton models of the three robots.

Fig. 8. The 3-step truncated automata of the robots at current states 7, 4, and
1.

7, 4, and 7; note however that none has a marker state. Then the current
plant model 𝐆3(𝑞), 𝑞 = (7, 4, 1), is the synchronous product:

𝐆3(𝑞) = 𝐆3
1(7)‖𝐆

3
2(4)‖𝐆

3
3(1).

Since 𝐆3
1(7), 𝐆

3
2(4), and 𝐆3

3(1) do not have marker states, neither does
𝐆3(𝑞). Hence we adopt the optimistic attitude to make the pending states
the marker states:

𝐆′(𝑞) = 𝑓 3(𝐆3(𝑞), 𝑞) = (𝑄3, 𝛴3, 𝛿3, 𝑞, 𝑄
′3
𝑚 );

𝐆(𝑞) = (𝑄3, 𝛴3, 𝛿3, 𝑞, 𝑄3
𝑚)

where

𝑄3
𝑚 ∶= 𝑄

′3
𝑚 ∪ {𝑞′ ∈ 𝑄3 ∣ (∃𝑠 ∈ 𝛴∗)𝑞′ = 𝛿3(𝑞, 𝑠) & |𝑠| = 3}.

Next, for control specification, we impose collision avoidance by
mutual exclusion of occupying the same cell in the grid by more than
one robot. In the current situation, at cells numbered 4, 5, 6, and 7,
robot 𝐆2 and robot 𝐆3 may collide. In addition, robot 𝐆3 may collide
with the other two robots at cell 4. So the specification automaton
𝐊(𝑞) is obtained from 𝐆(𝑞) by removing the states, and the associated
transitions, which correspond to (4, 4, ∗), (4, ∗, 4), (∗, 𝑙, 𝑙) where ∗ means
all states and 𝑙 ∈ {4,…7}. All states of 𝐊(𝑞) are marked.

Now compute the supremal controllable sublanguage sup(𝐿𝑚(𝐊
(𝑞))) with respect to 𝐆(𝑞), and let 𝐒𝐔𝐏(𝑞) = (𝑋𝑁 , 𝛴𝑁 , 𝜉𝑁 , 𝑞, 𝑋𝑁

𝑚 ) be
the supervisor for 𝐆(𝑞) that enforces sup(𝐿𝑚(𝐊(𝑞))), i.e. 𝐿𝑚(𝐒𝐔𝐏(𝑞)) =

Fig. 9. The 3-step truncated automata of the robots at current states.

sup(𝐿𝑚(𝐊(𝑞))). 𝐒𝐔𝐏(𝑞) has 108 states, and its control action at state 𝑞
is to enable the events in 𝛾(𝑞) = {15, 23, 33, 35}. In fact only the event
17 (robot 𝐆1 goes west) is disabled, because the occurrence of 17 would
cause blocking between robot 𝐆1 and robot 𝐆2. One event in 𝛾(𝑞) will be
executed, say 33, i.e. robot 𝐆3 goes east. So the current state 𝑞 = (7, 4, 1)
will transition to the next state

𝑞′ = (7, 4, 𝛿3(1, 33)) = (7, 4, 2).

The online control procedure repeats with the new state 𝑞′.
The above situation illustrates a supervisory control action that

prevents blocking. Let us consider another situation that demonstrates
a supervisory control action that avoids collision. As displayed in Fig. 9,
the current states of the robots are 22, 27, and 26. First, create a 3-step
truncated automaton at the current state for each robot: 𝐆3

1(22), 𝐆
3
2(27),

and 𝐆3
3(26) (see Fig. 9). These automata have state sizes 4, 8, and 4;

note that none has a marker state. Then the current plant model 𝐆3(𝑞),
𝑞 = (22, 27, 26), is the synchronous product:

𝐆3(𝑞) = 𝐆3
1(22)‖𝐆

3
2(27)‖𝐆

3
3(26).

Since 𝐆3
1(22), 𝐆

3
2(27), and 𝐆3

3(26) do not have marker states, neither does
𝐆3(𝑞). Hence we adopt the optimistic attitude to make the pending states
the marker states:

𝐆′(𝑞) = 𝑓 3(𝐆3(𝑞), 𝑞) = (𝑄3, 𝛴3, 𝛿3, 𝑞, 𝑄
′3
𝑚 );

𝐆(𝑞) = (𝑄3, 𝛴3, 𝛿3, 𝑞, 𝑄3
𝑚)

where

𝑄3
𝑚 ∶= 𝑄

′3
𝑚 ∪ {𝑞′ ∈ 𝑄3 ∣ (∃𝑠 ∈ 𝛴∗)𝑞′ = 𝛿3(𝑞, 𝑠) & |𝑠| = 3}.

Next, for control specification, we impose collision avoidance by
mutual exclusion of occupying the same cell in the grid by more than
one robot. In the current situation, at cells numbered 26 and 27,
robot 𝐆2 and robot 𝐆3 may collide. So the specification automaton
𝐊(𝑞) is obtained from 𝐆(𝑞) by removing the states, and the associated
transitions, which correspond to (∗, 26, 26), (∗, 27, 27) where ∗ means all
states. All states of 𝐊(𝑞) are marked.

Now compute the supremal controllable sublanguage sup(𝐿𝑚(𝐊
(𝑞))) with respect to 𝐆(𝑞), and let 𝐒𝐔𝐏(𝑞) = (𝑋𝑁 , 𝛴𝑁 , 𝜉𝑁 , 𝑞, 𝑋𝑁

𝑚 ) be
the supervisor for 𝐆(𝑞) that enforces sup(𝐿𝑚(𝐊(𝑞))), i.e. 𝐿𝑚(𝐒𝐔𝐏(𝑞)) =
sup(𝐿𝑚(𝐊(𝑞))). 𝐒𝐔𝐏(𝑞) has 68 states, and its control action at state 𝑞
is to enable the events in 𝛾(𝑞) = {15, 25}. In fact both event 27 (robot
𝐆2 goes west) and event 33 (robot 𝐆3 goes east) are disabled, because
the occurrence of 27 or 33 would cause collision between robot 𝐆2 and
robot 𝐆3 (simultaneous occupation of cell 26 or 27). One event in 𝛾(𝑞)
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Fig. 10. Start, item, and goal locations assigned to the fourth robot; automaton
model of the fourth robot; and the 3-step truncated automaton of the fourth
robot at the current state 10.

will be executed, say 25, i.e. robot 𝐆2 goes south. So the current state
𝑞 = (22, 27, 26) will transition to the next state

𝑞′ = (22, 𝛿3(27, 25), 26) = (22, 37, 26).

The online control procedure repeats with the new state 𝑞′.
For this case study, our online supervisory control scheme suc-

cessfully guarantees that all three agents reach their goal locations
without collision or blocking. Throughout the process, the largest online
supervisor 𝐒𝐔𝐏(𝑞) has state size 168. As a comparison, the offline
supervisor computed by standard method in Wonham and Cai (2018)
has 18,715 states; both the offline method and the online supervisory
control in Chung et al. (1992, 1993, 1994) require computing the plant
model 𝐆1‖𝐆2‖𝐆3 which has 21,250 states.

Remark 2. In addition to reducing computational effort, our supervi-
sory control scheme is effective in addressing time-varying changes in
the system. Consider again the situation in Fig. 9, and suppose that a new
task has just arrived with the start, item, and goal locations displayed
in Fig. 10. This new task is assigned to a new robot, the fourth robot;
we create the automaton 𝐆4 (as in (3)) displayed in Fig. 10. The current
states of the four robots are 22, 27, 26, and 10. First, we obtain a 3-
step truncated automaton at the current state for each robot: 𝐆3

1(22),
𝐆3

2(27), 𝐆
3
3(26) in Fig. 9, and 𝐆3

4(10) in Fig. 10 (which has 7 states). Then
the current plant model 𝐆3(𝑞), 𝑞 = (22, 27, 26, 10), is the synchronous
product:

𝐆3(𝑞) = 𝐆3
1(22)‖𝐆

3
2(27) ∥ 𝐆3

3(26)‖𝐆
3
4(10).

Since 𝐆3(𝑞) does not have marker states, we again adopt the optimistic
attitude to generate 𝐆(𝑞).

Next, for control specification, we again impose collision avoidance
by mutual exclusion. In the current situation, the new robot 𝐆3

4(10)
clearly will not collide with other three robots, and hence the speci-
fication automaton 𝐊(𝑞) does not change from the situation in Fig. 9.
(Precisely, 𝐊(𝑞) is obtained from 𝐆(𝑞) by removing the states, and
the associated transitions, which correspond to (∗, 26, 26, ∗), (∗, 27, 27, ∗)
where ∗ means all states.) Now compute the supremal controllable
sublanguage sup(𝐿𝑚(𝐊(𝑞))) with respect to 𝐆(𝑞), and let 𝐒𝐔𝐏(𝑞) be
the supervisor for 𝐆(𝑞) that enforces sup(𝐿𝑚(𝐊(𝑞))). 𝐒𝐔𝐏(𝑞) has 68
states, and its control action at state 𝑞 is to enable the events in
𝛾(𝑞) = {15, 25, 45, 47}. One event in 𝛾(𝑞) will be executed, say 45,
i.e. robot 𝐆4 goes south. The above has shown how to deal with a newly

Fig. 11. Testbed layout and an experiment snapshot: four robots are moving in
the area to pick up items. Only one item in the circle is left for pickup (three
items have been picked up), and the leftmost robot in the box is stopped by
the online supervisor to avoid collision with the nearby robot to the right.
(For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 12. LEGO MINDSTORMS EV3 (photo by the authors).

arrived task; other time-varying changes in the system can be handled
similarly, including removing a malfunctioned robot or planned paths
are unexpectedly blocked (e.g. by a fallen box).

3.5. Experiment testbed

To test the validity of our online supervisory control scheme when
it is implemented on real robots, we build an experiment testbed as
displayed in Fig. 11. The white lines represent passages (free space) in
warehouse where robots can move, while blue lines represent item-
storage space and items are placed at the intersections of blue lines.

The robot used in this testbed is the LEGO MINDSTORMS
EV3 (https://www.lego.com/en-us/mindstorms/products/mindstorms-
ev3-31313) (see Fig. 12). EV3 is a two-wheel differential-drive robot.
We mount in front of the robot two color sensors, facing downward,
so that the robot can trace the lines and make (left/right) turns at
intersections by sensing different combinations of colors. This is the low-
level continuous-time control that the robot performs autonomously. On
the high-level, online supervisory control is performed. This is done by
using an external laptop computer (i5 Processor and 4GB RAM): online
supervisors are computed and the corresponding control actions are sent
to involved robots through wireless communication (2.4 GHz).

Each intersection of two lines (either color) is treated as a state, and
thus an event is a robot moving from one intersection to the next. An
event is enabled or disabled by an online supervisor to ensure safety
and deadlock-free; such a control action is wirelessly communicated to
the corresponding robot. After each occurrence of event, a new online
supervisor will be computed, and the control cycle repeats until all
robots accomplish their tasks.
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We have successfully tested our proposed online supervisory control
scheme for four robots; a demonstration video is available in https:
//control.eng.osaka-cu.ac.jp/experiment.html. More extensive experi-
ment with a larger number of robots and various different locations
(start, item, goal) is being carried out.

4. Conclusions

We have presented an online supervisory control method amenable
for multi-agent DES, and applied the method to controlling warehouse
automation systems served by multiple mobile robots. Moreover, we
have demonstrated the effectiveness of the method through a case study,
as well as its validity when implemented on real robots.

In our ongoing work, we are investigating the sufficient number of
lookahead steps in order to ensure nonblocking controlled behavior. We
also aim to address issues of noise and bias in warehouse automation
systems under a probabilistic DES framework.
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