電気情報工学基礎演習B

Simulation of Controlling Mobile Robot Lecture 3

Instructor: 蔡 凱 TA: 笠原 萌人

Lecture 3

• GoToGoal control

Go To Goal

• Objective: steer the robot to reach a goal

Assume robot is moving at linear velocity v=constant.

We only control robot's angular velocity w: $\frac{d\theta}{dt} = u(t)$, control input Objective: $x(t) \to x^*$ and $y(t) \to y^*$ as $t \to \infty$

GoToGoal Controller

• Objective: steer the robot to reach a goal

Objective: $\theta(t) \to \theta^*(t)$ as $t \to \infty$

$$\theta^*(t) = \tan^{-1}\left(\frac{y^* - y(t)}{x^* - x(t)}\right)$$

GoToGoal Controller

• Objective: steer the robot to reach a goal

1. Use P-controller $u(t) = K_p(\theta^*(t) - \theta(t))$ to achieve $\theta(t) \to \theta^*(t)$

2. Stop robot when it is 'close' to goal: $\sqrt{((x^* - x(t))^2 + (y^* - y(t))^2)} < d_stop$

Code

- +simiam/+controller/+khepera3/K3Supervisor.m
 - function obj=K3Supervisor()

% Input your code below %

%Specified (constant) speed

obj.v = 0; (change this to see what happens)

%Goal location

obj.goal = [-1,-1]; (change this to see what happens)
%Stop condition

obj.d_stop = 0.1; (change this to see what happens)

Code

- +simiam/+controller/GoToGoal.m

Code

- +simiam/+controller/GoToGoal.m
 - function outputs = execute(...)

% Input your code below %

u_x = 0; (change this to see what happens)

% distance between goal and robot in y-direction. Hint: use y_g, y

u_y = 0; (change this to see what happens)

% angle from robot to goal. Hint: use atan2, u_x, u_y

theta_g = 0; (change this to see what happens)

theta_g =
$$\tan^{-1}\left(\frac{y-g-y}{x-g-x}\right) = \operatorname{atan2}(u_y, u_x);$$

Exercises

- Use package: simiam_lecture3.zip
- Change robot's initial pose in <u>settings.xml</u>
- Set robot's linear speed, goal location, and stop distance in <u>K3Supervisor.m</u>
- Adjust control gain parameter in <u>GoToGoal.m</u>
- Compute desired angle to goal in <u>GoToGoal.m</u>

Task

- Set robot's pose (1,1,3.14) in <u>settings.xml</u>
- Set robot's linear speed 0.3, goal location [1,-1], and stop distance 0.1 in <u>K3Supervisor.m</u>
- Find the minimal and maximal control gain parameters in <u>GoToGoal.m</u> that works "smoothly"