電気情報工学基碮演習B

Simulation of Controlling Mobile Robot Lecture 3

Instructor：蔡 凱
TA：笠原 萌人

Lecture 3

- GoToGoal control

Go To Goal

- Objective: steer the robot to reach a goal

Assume robot is moving at linear velocity v=constant.

We only control robot's angular velocity w: $\frac{d \theta}{d t}=u(t)$, control input
Objective: $x(t) \rightarrow x^{*}$ and $y(t) \rightarrow y^{*}$ as $t \rightarrow \infty$

GoToGoal Controller

- Objective: steer the robot to reach a goal

Objective: $\theta(t) \rightarrow \theta^{*}(t)$ as $t \rightarrow \infty$

$$
\theta^{*}(t)=\tan ^{-1}\left(\frac{y^{*}-y(t)}{x^{*}-x(t)}\right)
$$

GoToGoal Controller

- Objective: steer the robot to reach a goal

1. Use P-controller $u(t)=K_{p}\left(\theta^{*}(t)-\theta(t)\right)$ to achieve $\theta(t) \rightarrow \theta^{*}(t)$
2. Stop robot when it is 'close' to goal:
$\sqrt{\left(\left(x^{*}-x(t)\right)^{2}+\left(y^{*}-y(t)\right)^{2}\right)}<$ d_stop

Code

- +simiam/+controller/+khepera3/K3Supervisor.m
- function obj=K3Supervisor()
\% Input your code below \%
\%
\%Specified (constant) speed
obj.v = 0; (change this to see what happens)
\%Goal location
obj.goal $=[-1,-1]$; (change this to see what happens) \%Stop condition
obj.d_stop $=0.1$; (change this to see what happens)
\%

Code

- +simiam/+controller/GoToGoal.m
- function obj=GoToGoal()
\% Input your code below \%
\%
\% Propositional control gain \%
obj.Kp = 0; (change this to see what happens)
\%

Code

- +simiam/+controller/GoToGoal.m
- function outputs = execute(...)
\% Input your code below \%
\%
\% distance between goal and robot in x-direction. Hint: use
x_g, x
$u_{-} x=0$; (change this to see what happens)
\% distance between goal and robot in y-direction. Hint: use
y_g, y
$u _y=0$; (change this to see what happens)
\% angle from robot to goal. Hint: use atan2, u_x, u_y
theta_g $=0$; (change this to see what happens)
\%
theta_g $=\tan ^{-1}\left(\frac{\mathrm{y}-\mathrm{g}-\mathrm{y}}{\mathrm{x}_{-} \mathrm{g}-x}\right)=\operatorname{atan} 2\left(\mathrm{u}_{-} \mathrm{y}, \mathrm{u}_{-\mathrm{x}}\right)$

Exercises

- Use package: simiam_lecture3.zip
- Change robot's initial pose in settings.xml
- Set robot's linear speed, goal location, and stop distance in K3Supervisor.m
- Adjust control gain parameter in GoToGoal.m
- Compute desired angle to goal in GoToGoal.m

Task

- Set robot's pose ($1,1,3.14$) in settings.xml
- Set robot's linear speed 0.3, goal location [1,1], and stop distance 0.1 in K3Supervisor.m
- Find the minimal and maximal control gain parameters in GoToGoal.m that works "smoothly"

